Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-10T23:38:54.622Z Has data issue: false hasContentIssue false

Temporal niche segregation in two rodent assemblages of subtropical Mexico

Published online by Cambridge University Press:  08 October 2009

Ivan Castro-Arellano*
Affiliation:
Department of Wildlife and Fisheries Science, Texas A&M University, College Station, TX 77843–2258, USA
Thomas E. Lacher Jr.
Affiliation:
Department of Wildlife and Fisheries Science, Texas A&M University, College Station, TX 77843–2258, USA Center for Applied Biodiversity Science, Conservation International, 2011 Crystal Dr., Arlington, VA 22202, USA
*
1Corresponding author. Current address: Center for Environmental Sciences and Engineering and Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269-4210, USA. Email: ivan.castro@Uconn.edu or neotomodon@hotmail.com

Abstract:

Temporal niche partitioning can be a viable mechanism for coexistence, but has received less attention than other niche axes. We characterized and compared patterns of activity, and overlap of temporal activity among the five common rodent species from a tropical semideciduous forest (TSF) and between the two common rodent species from cloud forest (CF) at El Cielo Biosphere Reserve in Mexico. Capture frequencies over 2-h intervals, obtained via live trapping (6850 trap-nights) in chosen months over 3 y formed the empirical basis for analyses. Trap transects were set from 19h00 to 07h00 and checked every 2 h. Analyses of 484 captures evinced two distinct assemblages. The TSF assemblage was diverse and with non-random temporal niche segregation, whereas the CF assemblage was depauperate with its two dominant species evincing the same activity pattern. Predator avoidance between open- and closed-microhabitat species, as well as niche complementarity may explain temporal segregation at TSF. This is the first documentation of assemblage-wide non-random temporal segregation of neotropical rodents. Time of activity may be a largely under-appreciated mechanism in other species-rich tropical rodent assemblages as well as in other species-rich biotas.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ARRINGTON, D. A. & WINEMILLER, K. O. 2003. Diel changeover in sandbank fish assemblages in a neotropical floodplain river. Journal of Fish Biology 63:442459.CrossRefGoogle Scholar
ARVIN, J. C. 2001. An annotated checklist of the birds of the Gomez Farias region, Southwestern Tamaulipas, Mexico. Texas Parks and Wildlife, Austin. 42 pp.Google Scholar
BERGER, W. H. & PARKER, F. L. 1970. Diversity of planktonic Foraminifera in deep-sea sediments. Science 168:13451347.CrossRefGoogle ScholarPubMed
BOWERS, M. A. & BROWN, J. H. 1982. Body size and coexistence in desert rodents: chance or community structure? Ecology 63:391400.CrossRefGoogle Scholar
BRUSEO, J. A. & BARRY, R. E. 1995. Temporal activity of syntopic Peromyscus in the central Appalachians. Journal of Mammalogy 76:7882.CrossRefGoogle Scholar
CAMARGO, J. A. 1993. Must dominance increase with the number of subordinate species in competitive interactions? Journal of Theoretical Biology 161:537542.CrossRefGoogle Scholar
CAMERON, G. N., KINCAID, W. B. & CARNES, B. 1979. Experimental species removal: temporal activity patterns of Sigmodon hispidus and Reithrodontomys fulvescens. Journal of Mammalogy 60:195197.CrossRefGoogle Scholar
CAROTHERS, J. H. & JAKSIC, F. M. 1984. Time as a niche difference: the role of interference competition. Oikos 42:403406.CrossRefGoogle Scholar
CASTRO-ARELLANO, I. 2005. Ecological patterns of the small mammal communities at El Cielo Biosphere Reserve, Tamaulipas, México. Ph.D. dissertation, Texas A&M University, College Station, Texas, USA. 151 pp.Google Scholar
CASTRO-ARELLANO, I., PRESLEY, S. J., WILLIG, M. R., WUNDERLE, J. M. & SALDANHA, L. N. 2009. Reduced-impact logging and temporal activity of understorey bats in lowland Amazonia. Biological Conservation doi:10.1016/j.biocon.2009.04.013CrossRefGoogle Scholar
CEBALLOS, G. & OLIVA, G. 2005. Los mamíferos silvestres de México. Fondo de Cultura Económica y CONABIO, Mexico City. 986 pp.Google Scholar
DAAN, S. & ASCHOFF, J. 1982. Circadian contributions to survival. Pp. 305321 in Aschoff, J., Daan, S. & Gross, G. A. (eds). Vertebrate circadian systems. Springer-Verlag, Berlin.CrossRefGoogle Scholar
DAYAN, T. & SIMBERLOFF, D. 1994. Morphological relationships among coexisting heteromyids: an incisive dental character. American Naturalist 143:462477.CrossRefGoogle Scholar
ECCARD, J. A., MEYER, J. & SUNDELL, J. 2004. Space use, circadian activity pattern, and mating system of the nocturnal tree rat Thallomys nigricauda. Journal of Mammalogy 85:440445.CrossRefGoogle Scholar
FAUTH, J. E., BERNARDO, J., CAMARA, W., RESERARITS, J., VAN BUSKIRK, J. & MCCOLLUM, S. A. 1996. Simplifying the jargon of community ecology: a conceptual approach. American Naturalist 147:282286.CrossRefGoogle Scholar
FEER, F. & PINCEBOURDE, S. 2005. Diel flight activity and ecological segregation within an assemblage of tropical forest dung and carrion beetles. Journal of Tropical Ecology 21:2130.CrossRefGoogle Scholar
FEISINGER, P., SPEARS, E. E. & POOLE, R. W. 1981. A simple measure of niche breadth. Ecology 62:2732.CrossRefGoogle Scholar
FRASER, D. F., GILLIAM, J. F., AKKARA, J. T., ALBANESE, B. W. & SNIDER, S. B. 2004. Night feeding by guppies under predator release: effects on growth and daytime courtship. Ecology 85:312319.CrossRefGoogle Scholar
GLASS, G. E. & SLADE, N. A. 1980. The effect of Sigmodon hispidus on spatial and temporal activity of Microtus ochrogaster: evidence for competition. Ecology 62:358370.CrossRefGoogle Scholar
GOTELLI, N. J. & GRAVES, G. R. 1996. Null models in ecology. Smithsonian Institution Press, Washington, DC. 368 pp.Google Scholar
GUTMAN, R. & DAYAN, T. 2005. Temporal partitioning: an experiment with two species of spiny mice. Ecology 86:164173.CrossRefGoogle Scholar
HALLE, S. & STENSETH, N. C. 2000. Activity patterns in small mammals, an ecological approach. Ecological Studies 141. Springer-Verlag, Berlin. 320 pp.CrossRefGoogle Scholar
HICKS, N. G., MENZEL, M. A. & LAERM, J. 1998. Bias in the determination of temporal activity patterns of syntopic Peromyscus in the southern Appalachians. Journal of Mammalogy 79:10161020.CrossRefGoogle Scholar
HULRBERT, S. H. & LOMBARDI, C. M. 2003. Design and analysis: uncertain intent, uncertain result. Ecology 84:810812.Google Scholar
JACOB, J. & BROWN, J. S. 2000. Microhabitat use, giving-up densities and temporal activity as short- and long-term antipredator behaviors in common voles. Oikos 91:131138.CrossRefGoogle Scholar
JANZEN, D. H. 1983. Costa Rican natural history. University of Chicago Press, Chicago. 823 pp.CrossRefGoogle Scholar
JEFFRIES, M. J. & LAWTON, J. H. 1984. Enemy free space and the structure of ecological communities. Biological Journal of the Linnean Society 23:269286.CrossRefGoogle Scholar
JONES, M. E., MANDELIK, Y. & DAYAN, T. 2001. Coexistence of temporally partitioning spiny mice: roles of habitat structure and foraging behavior. Ecology 82:21642176.CrossRefGoogle Scholar
KOTLER, B. P. & BROWN, J. S. 1988. Environmental heterogeneity and the coexistence of desert rodents. Annual Review of Ecology and Systematics 19:281307.CrossRefGoogle Scholar
KOTLER, B. P., BROWN, J. S. & SUBACH, A. 1993. Mechanisms of species coexistence of optimal foragers: temporal partitioning by two species of sand dune gerbils. Oikos 67:548556.CrossRefGoogle Scholar
KOTLER, B. P., BROWN, J. S., DALL, S. R. X., GRESSER, S., GANEY, D. & BOUSKILA, A. 2002. Foraging games between gerbils and their predators: temporal dynamics of resource depletion and apprehension in gerbils. Evolutionary Ecology Research 4:495518.Google Scholar
KRONFELD-SCHOR, N. & DAYAN, T. 2003. Partitioning of time as an ecological resource. Annual Review of Ecology, Evolution and Systematics 34:153181.CrossRefGoogle Scholar
KRONFELD-SCHOR, N., DAYAN, T., ELVERT, R., HAIM, A., ZISAPEL, N. & HELDMAIER, G. 2001. On the use of the time axis for ecological separation: diel rhythms as an evolutionary constraint. American Naturalist 158:451457.CrossRefGoogle ScholarPubMed
LOREAU, M. 1989. On testing temporal niche differentiation in carabid beetles. Oecologia 81:8996.CrossRefGoogle ScholarPubMed
MAL'KOVA, M. G., PAL'CHEKH, N.A., YAKIMENKO, V. V. & KUZ'MIN, I. V. 2004. The spatiotemporal structure of rodent populations in the Steppe Zone of Western Siberia. Russian Journal of Ecology 35:2734.CrossRefGoogle Scholar
MORAN, M. D. 2003. Arguments for rejecting the sequential Bonferroni in ecological studies. Oikos 100:403405.CrossRefGoogle Scholar
MORGAN, E. 2004. Ecological significance of biological clocks. Biological Rhythm Research 35:312.CrossRefGoogle Scholar
MORRIS, D. W. 1987. Ecological scale and habitat use. Ecology 68:362369.CrossRefGoogle Scholar
O'FARRELL, M. J. 1974. Seasonal activity patterns of rodents in a sagebrush community. Journal of Mammalogy 55:809823.CrossRefGoogle Scholar
OVADIA, O. & DOHNA, H. 2003. The effect of intra- and interspecific aggression on patch residence time in Negev Desert gerbils: a competing risk analysis. Behavioral Ecology 14:583591.CrossRefGoogle Scholar
PAISE, G. & VIEIRA, E. M. 2006. Daily activity of a neotropical rodent (Oxymycterus nasutus): seasonal changes and influence of environmental factors. Journal of Mammalogy 87:733739.CrossRefGoogle Scholar
PIANKA, E. R. 1973. The structure of lizard communities. Annual Review of Ecology and Systematics 4:5374.CrossRefGoogle Scholar
PIELOU, E. C. 1975. Mathematical ecology. Wiley, New York. 385 pp.Google Scholar
PRESLEY, S. J., WILLIG, M. R., CASTRO-ARELLANO, I. & WEAVER, S. C. 2009. Effects of habitat conversion on temporal activity patterns of phyllostomid bats in lowland Amazonian rainforest. Journal of Mammalogy 90:210221.CrossRefGoogle Scholar
PROCHASKA, M. L. & SLADE, N. A. 1981. The effect of Sigmodon hispidus on summer diel activity of Microtus ochrogaster in Kansas. Transactions of the Kansas Academy of Sciences 84:134138.CrossRefGoogle Scholar
PUIG, H. & BRACHO, R. 1987. El bosque mesófilo de montaña de Tamaulipas. Instituto de Ecología, Mexico City. 235 pp.Google Scholar
REHMEIER, R. L., KAUFMANN, G. A. & KAUFMANN, D. W. 2006. An automatic activity monitoring system for small mammals under natural conditions. Journal of Mammalogy 87:628634.CrossRefGoogle Scholar
ROBACK, P. J. & ASKINS, R. A. 2005. Judicious use of multiple hypothesis tests. Conservation Biology 19:261267.CrossRefGoogle Scholar
ROLL, U., DAYAN, T. & KRONFELD-SCHOR, N. 2006. On the role of phylogeny in determining activity patterns of rodents. Evolutionary Ecology 20:479490.CrossRefGoogle Scholar
SCHOENER, T. W. 1974. Resource partitioning in ecological communities. Science 185:2739.CrossRefGoogle ScholarPubMed
SCHOENER, T. W. 1986. Resource partitioning. Pp. 91126 in Kikkawa, J. & Anderson, D. J. (eds). Community ecology: pattern and process. Blackwell, Oxford.Google Scholar
SOKAL, R. R. & ROHLF, F. J. 1995. Biometry. W. H. Freeman and Company, New York. 880 pp.Google Scholar
VALIENTE-BANUET, A., GONZALEZ, M. F & PIÑERO, D. D. 1995. La vegetación selvática de la región de Gómez Farias, Tamaulipas, México. Acta Botánica Mexicana 33:136.Google Scholar
VIEIRA, E. M. & BAUMGARTEN, L. C. 1995. Daily activity patterns of small mammals in a cerrado area from central Brazil. Journal of Tropical Ecology 11:255262.CrossRefGoogle Scholar
WEBB, C. O., ACKERLY, D. D., MCPEEK, M. A. & DONOGHUE, M. J. 2002. Phylogenies and community ecology. Annual Review of Ecology and Systematics 33:475505.CrossRefGoogle Scholar
WEIHER, E. & KEDDY, P. 1999. Ecological assembly rules: perspectives, advances, retreats. Cambridge University Press, Cambridge. 438 pp.CrossRefGoogle Scholar
WINEMILLER, K. O. & PIANKA, E. R. 1990. Organization in natural assemblages of desert lizards and tropical fishes. Ecological Monographs 60:2755.CrossRefGoogle Scholar
WOLFE, J. L. & SUMMERLIN, C. T. 1989. The influence of lunar light on nocturnal activity of the old-field mouse. Animal Behaviour 37:410414.CrossRefGoogle Scholar
ZIV, Y., ABRAMSKY, Z., KOTLER, B. P. & SUBACH, A. 1993. Interference competition and temporal and habitat partitioning in two gerbil species. Oikos 66:237246.CrossRefGoogle Scholar