Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T16:02:04.222Z Has data issue: false hasContentIssue false

Plant communities and ecosystem processes in a succession-altitude matrix after shifting cultivation in the tropical montane forest zone of northern Borneo

Published online by Cambridge University Press:  09 November 2016

Shogoro Fujiki*
Affiliation:
Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606–8502, Japan
Shogo Nishio
Affiliation:
Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606–8502, Japan
Kei-ichi Okada
Affiliation:
Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606–8502, Japan Graduate School of Environment and Information Sciences, Yokohama National University, 79-7, Tokiwadai, Hodogaya-ku, Yokohama 240–8501, Japan
Jamili Nais
Affiliation:
Sabah Parks, P.O. Box 10626, 88806 Kota Kinabalu, Sabah, Malaysia
Kanehiro Kitayama
Affiliation:
Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606–8502, Japan
*
*Corresponding author. Email: fujiki5636@gmail.com

Abstract:

Plant communities and ecosystem processes in seres at multiple altitudes in the tropical montane forest zone of northern Borneo were studied to understand the patterns and mechanisms of the secondary succession after shifting cultivation. A total of 25 stands (and additional three stands) were sampled with stand ages ranging from 2 to 55 y after slash and burn at altitudes between 900 and 1400 m asl. Plant species composition, above-ground biomass (AGB), chemical properties of soils, litter and foliar samples were investigated in each stand. A TWINSPAN analysis classified five plant communities primarily as a sere but with two altitudinal communities in the later successional phase. AGB accumulated steadily at the rate of 2.42 Mg ha−1 y−1 during the succession for the first 55 y due to the ontogenetic development of plants as well as plant community shifts. At the onset of secondary succession, pool of soil NO3-N and soil total P was high probably because burning caused flushes of minerals originating from the burnt plant materials. Pool of soil NO3-N and soil total P decreased with increasing stand age during the succession. Leaf-litter N:P ratios of dominant species significantly increased with increasing stand age suggesting disproportionately greater P deficiency than N deficiency in the later successional phase. It is suggested that tree species shifted to those of greater P-use efficiency during succession in response to decreasing soil P availability. We conclude that the interaction of altitude with the reduction of soil N and P availability was related to the altitudinal split of plant communities in the later phase, while pioneer communities were wide-ranging across altitudes reflecting richer soil nutrients.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

AIBA, S. & KITAYAMA, K. 1999. Structure, composition and species diversity in an altitude-substrate matrix of rain forest tree communities on Mount Kinabalu, Borneo. Plant Ecology 140:139157.Google Scholar
AIBA, S. & KITAYAMA, K. 2002. Effects of the 1997–98 El Niño drought on rain forests of Mount Kinabalu, Borneo. Journal of Tropical Ecology 18:215230.Google Scholar
ALVES, D. S., SOARES, J. V., AMARAL, S., MELLO, E. M. K., ALMEIDA, S. A. S., FERNANDES DA SILVA, O. & SILVEIRA, A. M. 1997. Biomass of primary and secondary vegetation in Rondônia, Western Brazilian Amazon. Global Change Biology 3:451461.Google Scholar
BAKER, T., SWAINE, M. & BURSLEM, D. 2003. Variation in tropical forest growth rates: combined effects of functional group composition and resource availability. Perspectives in Plant Ecology, Evolution and Systematics 6:2136.Google Scholar
BEAMAN, J. H. 2005. Mount Kinabalu: hotspot of plant diversity in Borneo. Biologiske Skrifter 55:103127.Google Scholar
BONNER, M. T. L., SCHMIDT, S. & SHOO, L. P. 2013. A meta-analytical global comparison of aboveground biomass accumulation between tropical secondary forests and monoculture plantations. Forest Ecology and Management 291:7386.Google Scholar
BRAND, J. & PFUND, J. L. 1998. Site-and watershed-level assessment of nutrient dynamics under shifting cultivation in eastern Madagascar. Agriculture, Ecosystems and Environment 71:169183.Google Scholar
BREARLEY, F. Q., PRAJADINATA, S., KIDD, P. S., PROCTOR, J. & SURIANTATA. 2004. Structure and floristics of an old secondary rain forest in Central Kalimantan, Indonesia, and a comparison with adjacent primary forest. Forest Ecology and Management 195:385397.Google Scholar
CERTINI, G. 2005. Effects of fire on properties of forest soils: a review. Oecologia 143:110.Google Scholar
CHAI, S.-L. & TANNER, E. V. J. 2011. 150-year legacy of land use on tree species composition in old-secondary forests of Jamaica. Journal of Ecology 99:113121.Google Scholar
DAVIDSON, E. 2004. Nitrogen and phosphorus limitation of biomass growth in a tropical secondary forest. Ecological Applications 14:150163.CrossRefGoogle Scholar
DAVIDSON, E. A., DE CARVALHO, C. J. R., FIGUEIRA, A. M., ISHIDA, F. Y., OMETTO, J. P. H. B., NARDOTO, G. B., SABÁ, R. T., HAYASHI, S. N., LEAL, E. C., VIEIRA, I. C. G. & MARTINELLI, L. A. 2007. Recuperation of nitrogen cycling in Amazonian forests following agricultural abandonment. Nature 447:995998.CrossRefGoogle ScholarPubMed
DENSLOW, J. S. & GUZMAN, G. 2000. Variation in stand structure, light and seedling abundance across a tropical moist forest chronosequence, Panama. Journal of Vegetation Science 11:201212.CrossRefGoogle Scholar
EWEL, J. J., CHAI, P. & LIM, M. T. 1983. Biomass and floristics of three young second-growth forests in Sarawak. The Malaysian Forester 46:347364.Google Scholar
FAO. 2012. State of the World's forests 2012. Food and Agriculture Organization of United Nations, Rome.Google Scholar
FUJIKI, S., OKADA, K. I., NISHIO, S., & KITAYAMA, K. 2016. Estimation of the stand ages of tropical secondary forests after shifting cultivation based on the combination of WorldView-2 and time-series Landsat images. ISPRS Journal of Photogrammetry and Remote Sensing 119:280293.Google Scholar
FUKUSHIMA, M., KANZAKI, M., HARA, M., OHKUBO, T., PREECHAPANYA, P. & CHOOCHAROEN, C. 2008. Secondary forest succession after the cessation of swidden cultivation in the montane forest area in Northern Thailand. Forest Ecology and Management 255:19942006.Google Scholar
GEHRING, C., DENICH, M. & VLEK, P. L. 2005. Resilience of secondary forest regrowth after slash-and-burn agriculture in central Amazonia. Journal of Tropical Ecology 21:519527.CrossRefGoogle Scholar
GENTRY, A. H. 1988. Changes in plant community diversity and floristic composition on environmental and geographical gradients. Annals of the Missouri Botanical Garden 75:134.Google Scholar
GEROLD, G., SCHAWE, M. & BACH, K. 2008. Hydrometeorologic, pedologic and vegetation patterns along an elevational transect in the montane forest of the Bolivian Yungas. Erde 139:141168.Google Scholar
GIARDINA, C. P., SANDFORD, R. L. JR., DOCKERSMITH, I. C., SANFORD, R. L. & DOCKERSMITH, I. C. 2000. Changes in soil phosphorus and nitrogen during slash-and-burn clearing of a dry tropical forest. Soil Science Society of America Journal 64:399405.Google Scholar
GROGAN, P., BRUNS, T. D. & CHAPIN, F. S. 2000. Fire effects on ecosystem nitrogen cycling in a Californian bishop pine forest. Oecologia 122:537544.Google Scholar
GUARIGUATA, M. R. & OSTERTAG, R. 2001. Neotropical secondary forest succession: changes in structural and functional characteristics. Forest Ecology and Management 148:185206.Google Scholar
GUARIGUATA, M. R., CHAZDON, R. L., DENSLOW, J. S., DUPUY, J. M. & ANDERSON, L. 1997. Structure and floristics of secondary and old-growth forest stands in lowland Costa Rica. Plant Ecology 132:107120.CrossRefGoogle Scholar
HASHIMOTO, T., TANGE, T., MASUMORI, M., YAGI, H., SASAKI, S. & KOJIMA, K. 2004. Allometric equations for pioneer tree species and estimation of the aboveground biomass of a tropical secondary forest in East Kalimantan. Tropics 14:123130.CrossRefGoogle Scholar
HOMEIER, J., BRECKLE, S. W., GUNTER, S., ROLLENBECK, R. T. & LEUSCHNER, C. 2010. Tree diversity, forest structure and productivity along altitudinal and topographical gradients in a species-rich ecuadorian montane rain forest. Biotropica 42:140148.Google Scholar
HUBER, O. 2006. Herbaceous ecosystems on the Guayana Shield, a regional overview. Journal of Biogeography 33:464475.Google Scholar
IMAI, N., KITAYAMA, K. & TITIN, J. 2012. Effects of logging on phosphorus pools in a tropical rainforest of Borneo. Journal of Tropical Forest Science 24:517.Google Scholar
JEPSEN, M. R. 2006. Above-ground carbon stocks in tropical fallows, Sarawak, Malaysia. Forest Ecology and Management 225:287295.Google Scholar
JOBBÁGY, E. & JACKSON, R. 2003. Patterns and mechanisms of soil acidification in the conversion of grasslands to forests. Biogeochemistry 64:205230.Google Scholar
KAPPELLE, M., GEUZE, T., LEAL, M. & CLEEF, A. 1996. Successional age and forest structure in a Costa Rican upper montane Quercus forest. Journal of Tropical Ecology 12:681698.Google Scholar
KENDAWANG, J. J., NINOMIYA, I., TANAKA, K., OZAWA, T., HATTORI, D., TANAKA, S., & SAKURAI, K. 2007. Effects of burning strength in shifting cultivation on the early stage of secondary succession in Sarawak, Malaysia. Tropics 16:309321.Google Scholar
KENZO, T., ICHIE, T., HATTORI, D., ITIOKA, T., HANDA, C., OHKUBO, T., KENDAWANG, J. J., NAKAMURA, M., SAKAGUCHI, M., TAKAHASHI, N., OKAMOTO, M., TANAKA-ODA, A., SAKURAI, K. & NINOMIYA, I. 2009. Development of allometric relationships for accurate estimation of above- and below-ground biomass in tropical secondary forests in Sarawak, Malaysia. Journal of Tropical Ecology 25:371386.Google Scholar
KENZO, T., ICHIE, T., HATTORI, D., KENDAWANG, J. J., SAKURAI, K. & NINOMIYA, I. 2010. Changes in above- and belowground biomass in early successional tropical secondary forests after shifting cultivation in Sarawak, Malaysia. Forest Ecology and Management 260:875882.Google Scholar
KITAYAMA, K. 1992. An altitudinal transect study of the vegetation on Mount Kinabalu, Borneo. Vegetatio 102:149171.Google Scholar
KITAYAMA, K. & AIBA, S. 2002. Ecosystem structure and productivity of tropical rain forests along altitudinal gradients with contrasting soil phosphorus pools on Mount Kinabalu, Borneo. Journal of Ecology 90:3751.Google Scholar
KITAYAMA, K., AIBA, S., MAJALAP-LEE, N. & OHSAWA, M. 1998. Soil nitrogen mineralization rates of rainforests in a matrix of elevations and geological substrates on Mount Kinabalu, Borneo. Ecological Research 13:301312.Google Scholar
KITAYAMA, K., MAJALAP-LEE, N. & AIBA, S. 2000. Soil phosphorus fractionation and phosphorus-use efficiencies of tropical rainforests along altitudinal gradients of Mount Kinabalu, Borneo. Oecologia 123:342349.Google Scholar
KIYONO, Y. & HASTANIAH. 2000. The role of slash-and-burn agriculture in transforming dipterocarp forest into Imperata grassland. Pp. 199208 in Guhardja, E., Fatawi, M., Sutisna, M., Mori, T. & Ohta, S. (eds). Rainforest ecosystems of East Kalimantan: El Niño, drought, fire and human impacts. Springer Science & Business Media.Google Scholar
KNIGHT, D. 1975. A phytosociological analysis of species-rich tropical forest on Barro Colorado island, Panama. Ecological Monographs 45:259284.Google Scholar
KOERSELMAN, W. & MEULEMAN, A. F. M. 1996. The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology 33:14411450.Google Scholar
LANGNER, A., MIETTINEN, J. & SIEGERT, F. 2007. Land cover change 2002–2005 in Borneo and the role of fire derived from MODIS imagery. Global Change Biology 13:23292340.Google Scholar
LAWRENCE, D. & SCHLESINGER, W. 2001. Changes in soil phosphorus during 200 years of shifting cultivation in Indonesia. Ecology 82:27692780.Google Scholar
LUGO, A. E. 1992. Comparison of tropical tree plantations with secondary forests of similar age. Ecological Monographs 62:141.Google Scholar
MASON, N. W. H., RICHARDSON, S. J., PELTZER, D. A., DE BELLO, F., WARDLE, D. A. & ALLEN, R. B. 2012. Changes in coexistence mechanisms along a long-term soil chronosequence revealed by functional trait diversity. Journal of Ecology 100:678689.Google Scholar
PEAY, K. G., GARBELOTTO, M. & BRUNS, T. D. 2009. Spore heat resistance plays an important role in disturbance-mediated assemblage shift of ectomycorrhizal fungi colonizing Pinus muricata seedlings. Journal of Ecology 97:537547.Google Scholar
POORTER, L., BONGERS, F., AIDE, T. M., ALMEYDA ZAMBRANO, A. M., BALVANERA, P., BECKNELL, J. M., BOUKILI, V., BRANCALION, P. H. S., BROADBENT, E. N., CHAZDON, R. L., CRAVEN, D., DE ALMEIDA-CORTEZ, J. S., CABRAL, G. A. L., DE JONG, B. H. J., DENSLOW, J. S., DENT, D. H., DEWALT, S. J., DUPUY, J. M., DURÁN, S. M., ESPÍRITO-SANTO, M. M., FANDINO, M. C., CÉSAR, R. G., HALL, J. S., HERNANDEZ-STEFANONI, J. L., JAKOVAC, C. C., JUNQUEIRA, A. B., KENNARD, D., LETCHER, S. G., LICONA, J.-C., LOHBECK, M., MARÍN-SPIOTTA, E., MARTÍNEZ-RAMOS, M., MASSOCA, P., MEAVE, J. A., MESQUITA, R., MORA, F., MUÑOZ, R., MUSCARELLA, R., NUNES, Y. R. F., OCHOA-GAONA, S., DE OLIVEIRA, A. A., ORIHUELA-BELMONTE, E., PEÑA-CLAROS, M., PÉREZ-GARCÍA, E. A., PIOTTO, D., POWERS, J. S., RODRÍGUEZ-VELÁZQUEZ, J., ROMERO-PÉREZ, I. E., RUÍZ, J., SALDARRIAGA, J. G., SANCHEZ-AZOFEIFA, A., SCHWARTZ, N. B., STEININGER, M. K., SWENSON, N. G., TOLEDO, M., URIARTE, M., VAN BREUGEL, M., VAN DER WAL, H., VELOSO, M. D. M., VESTER, H. F. M., VICENTINI, A., VIEIRA, I. C. G., BENTOS, T. V., WILLIAMSON, G. B. & ROZENDAAL, D. M. A. 2016. Biomass resilience of Neotropical secondary forests. Nature 530:211214.Google Scholar
RISWAN, S. & HARTANTI, L. 1995. Human impacts on tropical forest dynamics. Vegetatio 121:4152.Google Scholar
RUSSELL, J., FRASER, A. R., WATSON, J. R. & PARSONS, J. W. 1974. Thermal decomposition of protein in soil organic matter. Geoderma 11:6366.Google Scholar
SALDARRIAGA, J., WEST, D. C., THARP, M. & UHL, C. 1988. Long-term chronosequence of forest succession in the Upper Rio Negro of Colombia and Venezuela. Journal of Ecology 76:938958.Google Scholar
SILVER, W. L., OSTERTAG, R. & LUGO, A. E. 2000. The potential for carbon sequestration through reforestation of abandoned tropical agricultural and pasture lands. Restoration Ecology 8:394407.Google Scholar
SOETHE, N., LEHMANN, J. & ENGELS, C. 2008. Nutrient availability at different altitudes in a tropical montane forest in Ecuador. Journal of Tropical Ecology 24:397406.Google Scholar
TANNER, E. V. J., VITOUSEK, P. M. & CUEVAS, E. 1998. Experimental investigation of nutrient limitation of forest growth on wet tropical mountains. Ecology 79:1022.Google Scholar
TER BRAAK, C. J. F. & SMILAUER, P. 2002. CANOCO Reference Manual and Canodraw for Windows User's Guide: Software for Canonical Community Ordination (version 4.5). Microcomputer Power, Ithaca.Google Scholar
TIESSEN, H., SALCEDO, I. H. & SAMPAIO, E. V. S. B. 1992. Nutrient and soil organic matter dynamics under shifting cultivation in semi-arid northeastern Brazil. Agriculture, Ecosystems and Environment 38:139151.Google Scholar
UHL, C. & JORDAN, C. F. 1984. Succession and nutrient dynamics following forest cutting and burning in Amazonia. Ecology 65:14761490.Google Scholar
VAN BREUGEL, M., BREUGEL, P., JANSEN, P. A., MARTÍNEZ-RAMOS, M. & BONGERS, F. 2012. The relative importance of above- versus belowground competition for tree growth during early succession of a tropical moist forest. Plant Ecology 213:2534.Google Scholar
VAN DO, T., OSAWA, A. & THANG, N. T. 2010. Recovery process of a mountain forest after shifting cultivation in Northwestern Vietnam. Forest Ecology and Management 259:16501659.Google Scholar
VAN DO, T., OSAWA, A., THANG, N., VAN, N., HANG, B., KHANH, C., THAO, L. & TUAN, D. 2011. Population changes of early successional forest species after shifting cultivation in Northwestern Vietnam. New Forests 41:247262.Google Scholar
WAN, S., HUI, D. & LUO, Y. 2001. Fire effects on nitrogen pools and dynamics in terrestrial ecosystems: a meta-analysis. Ecological Applications 11:13491365.Google Scholar
WASLI, M. E. BIN, TANAKA, S., KENDAWANG, J. J., SEMAN, L., UNANG, B., LAT, J., ABDU, A., MOROOKA, Y. & SAKURAI, K. 2009. Vegetation conditions and soil fertility of fallow lands under intensified shifting cultivation systems in Sarawak, Malaysia. Tropics 18:115126.CrossRefGoogle Scholar