Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T10:10:06.645Z Has data issue: false hasContentIssue false

The influence of mistletoes on nitrogen cycling in a semi-arid savanna, south-west Zimbabwe

Published online by Cambridge University Press:  27 February 2013

Hilton G. T. Ndagurwa*
Affiliation:
Forest Ecology Laboratory, Faculty of Applied Science, National University of Science & Technology, P.O. Box AC 939 Ascot, Bulawayo, Zimbabwe Department of Forest Resources & Wildlife Management, Faculty of Applied Science, National University of Science & Technology, P.O. Box AC 939 Ascot, Bulawayo, Zimbabwe
John S. Dube
Affiliation:
Department of Animal Science & Rangeland Management, Lupane State University, P.O. Box AC 255 Ascot, Bulawayo, Zimbabwe
Donald Mlambo
Affiliation:
Border Timbers Limited, 1 Aberdeen Road P.O. Box 458 Mutare, Zimbabwe
*
1Corresponding author. Email: hilton.ndagurwa@nust.ac.zw

Abstract:

This study investigated the effects of mistletoe infection on N cycling in a semi–arid savanna, south-west Zimbabwe. We established five plots (10 × 10 m) which each included three large canopy-dominant Acacia karroo trees infected by one of three mistletoes (Erianthemum ngamicum, Plicosepalus kalachariensis and Viscum verrucosum) and non-infected A. karroo trees. In each plot, we measured litterfall, litter quality (N, phenolics, tannins and lignin), soil nutrient concentrations and N transformations beneath tree canopies. Soil N, P and Ca were greatest beneath trees infected by P. kalachariensis than beneath non-infected trees. Litterfall and litter N returns were 1.5, 2 and 1.4 times more beneath A. karroo trees infected by E. ngamicum, P. kalachariensis and V. verrucosum, respectively. Mineral N increased with mistletoe infection but did not exceed 20%. Soil N transformations were greater beneath trees infected by E. ngamicum (> 40%), and lower beneath trees infected by P. kalachariensis (<50%) and V. verrucosum (<48%) than beneath non-infected A. karroo trees. Soil N transformations were negatively correlated with condensed tannins, lignin and lignin : N. We conclude that the improved N concentration can increase resource heterogeneity, which may alter the ecosystem structure and functioning in the semi-arid savanna.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

AMELOOT, E., VERLINDEN, G., BOECKX, P., VERHEYEN, K. & HERMY, M. 2008. Impact of hemiparasitic Rhinanthus angustifolius and R. minor on nitrogen availability in grasslands. Plant and Soil 311:255268.CrossRefGoogle Scholar
ANDERSON, J. M. & INGRAM, J. S. I. 1993. Tropical soil biology and fertility: a handbook of methods. (Second edition). CAB International, Wallingford. 221 pp.Google Scholar
AUKEMA, J. E. & MARTINEZ DEL RIO, C. 2002. Where does a fruit eating bird deposit mistletoe seeds? Seed deposition patterns and an experiment. Ecology 83:34893496.CrossRefGoogle Scholar
BANNISTER, P. & STRONG, G. L. 2001. Carbon and nitrogen isotope ratios, nitrogen content and heterotrophy in New Zealand mistletoes. Oecologia 126:1020.CrossRefGoogle ScholarPubMed
BARDGETT, R. D., SMITH, R. S., SHIEL, R. S., PEACOCK, S., SIMKIN, J. M., QUIRK, H. & HOBBS, P. J. 2006. Parasitic plants indirectly regulate below-ground properties in grassland ecosystems. Nature 439:969972.CrossRefGoogle ScholarPubMed
BERG, B. 1986. Nutrient release from litter and humus in coniferous forest soils – a mini review. Scandinavian Journal of Forest Research 1:359369.CrossRefGoogle Scholar
BOWIE, M. & WARD, D. 2004. Water and nutrient status of the mistletoe Plicosepalus acaciae parasitic on isolated Negev Desert populations of Acacia raddiana differing in level of mortality. Journal of Arid Environments 56:487508.CrossRefGoogle Scholar
COOPER, S. M. & OWEN-SMITH, N. 1986. Effects of plant spinescence on large mammalian herbivores. Oecologia 68:446455.CrossRefGoogle ScholarPubMed
CROSS, A. F. & SCHLESINGER, W. H. 1999. Plant regulation of soil nutrient distribution in the Northern Chihuahuan desert. Plant Ecology 145:1125.CrossRefGoogle Scholar
DEAN, W. R. J., MIDGLEY, J. J. & STOCK, W. D. 1994. The distribution of mistletoes in South Africa: patterns of species richness and host choice. Journal of Biogeography 21:503510.CrossRefGoogle Scholar
DYE, P. J. 1983. Prediction of variation in grass growth in a semi-arid induced grassland. PhD thesis, University of the Witswatersrand, Johannesburg, South Africa.Google Scholar
DYE, P. J. & WALKER, B. H. 1987. Patterns of shoot growth in a semi-arid grassland in Zimbabwe. Journal of Applied Ecology 24:633644.CrossRefGoogle Scholar
EHLERINGER, J. R. & MARSHALL, J. D. 1995. Water relations. Pp. 125140 in Press, M. C. & Graves, J. D. (eds.). Parasitic plants. Chapman and Hall, London.Google Scholar
EL AZHAR, S., VERHE, R., PROOT, M., SANDRA, P. & VERSTRAETE, W. 1986. Binding of nitrite-N on polyphenols during nitrification. Plant and Soil 94:369382.CrossRefGoogle Scholar
ENO, C. F. 1960. Nitrate production in the field by incubating the soils in polythene bags. Soil Science Society of America Proceedings 24:277279.CrossRefGoogle Scholar
GALLARDO, A. & MERINO, J. 1992. Nitrogen immobilization in leaf litter at two Mediterranean ecosystems of SW Spain. Biogeochemistry 15:213228.CrossRefGoogle Scholar
HANDLEY, W. R. C. 1961. Further evidence for the importance of residual leaf protein complexes in litter decomposition and the supply of nitrogen for plant growth. Plant and Soil 15:3773.CrossRefGoogle Scholar
HÄTTENSCHWILER, S. & VITOUSEK, P. M. 2000. The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends in Ecology and Evolution 15:238243.CrossRefGoogle ScholarPubMed
HOBBIE, S. E. & GOUGH, L. 2002. Foliar and soil nutrients in tundra on glacial landscapes of contrasting ages in northern Alaska. Oecologia 131:453462.CrossRefGoogle ScholarPubMed
HORNER, J. D., GOSZ, J. R. & CATES, R. G. 1988. The role of carbon-based plant secondary metabolites in decomposition in terrestrial ecosystems. American Naturalist 132:869883.CrossRefGoogle Scholar
JOANISSE, G. D., BRADLEY, R. L., PRESTON, C. M. & MUNSON, A. D. 2007. Soil enzyme inhibition by condensed litter tannins may drive ecosystem structure and processes: the case of Kalmia angustifolia. New Phytologist 175:535546.CrossRefGoogle ScholarPubMed
KNOPS, J. M. H., BRADLEY, K. L. & WEDIN, D. A. 2002. Mechanisms of plant species impacts on ecosystem nitrogen cycling. Ecology Letters 5:454466.CrossRefGoogle Scholar
MAKKAR, H. P. S. 2003. Quantification of tannins in tree and shrub foliage. Kluwer Academic Publishers, Dordrecht. 226 pp.CrossRefGoogle Scholar
MAPAURA, A. & TIMBERLAKE, J. 2004. A checklist of Zimbabwean vascular plants. Southern African Botanical Diversity Network Report No. 33. SABONET, Pretoria and Harare.Google Scholar
MARCH, W. A. 2007. The impact of an Australian mistletoe, Amyema miquelii (Loranthaceae), on nutrient cycling in eucalypt forests and woodlands. PhD thesis, Charles Sturt University, Albury.Google Scholar
MARCH, W. A. & WATSON, D. M. 2007. Parasites boost productivity: effects of mistletoe on litterfall dynamics in a temperate Australian forest. Oecologia 154:339347.CrossRefGoogle Scholar
MARCH, W. A. & WATSON, D. M. 2010. The contribution of mistletoes to nutrient returns: evidence for a critical role in nutrient cycling. Austral Ecology 35:713721.CrossRefGoogle Scholar
MELILLO, J. M., ABER, J. D. & MURATORE, J. F. 1982. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621626.CrossRefGoogle Scholar
MLAMBO, D. & NYATHI, P. 2008. Litterfall and nutrient return in a semi-arid African savanna dominated by Colophospermum mopane. Plant Ecology 196:101110.CrossRefGoogle Scholar
MLAMBO, D., NYATHI, P. & MAPAURE, I. 2005. Influence of Colophospermum mopane on surface soil properties and understorey vegetation in a southern African savanna. Forest Ecology and Management 212:394404.CrossRefGoogle Scholar
MLAMBO, D., MWENJE, E. & NYATHI, P. 2007. Effects of tree cover and season on soil nitrogen dynamics and microbial biomass in an African savanna woodland dominated by Colophospermum mopane. Journal of Tropical Ecology 23:437448.CrossRefGoogle Scholar
MUELLER, R. C. & GEHRING, C. A. 2006. Interactions between an above-ground plant parasite and below-ground ectomycorrhizal fungal communities on pinyon pine. Journal of Ecology 94:276284.CrossRefGoogle Scholar
NDAGURWA, H. G. T., MUNDY, P. J., DUBE, J. S. & MLAMBO, D. 2012. Patterns of mistletoe infection in four Acacia species in a semi-arid southern African savanna. Journal of Tropical Ecology 28:523526.CrossRefGoogle Scholar
PATE, J. S., TRUE, K. C. & KUO, J. 1991. Partitioning of dry-matter and mineral nutrients during a reproductive cycle of the mistletoe Amyema linophyllum (Fenzl) Tieghem parasitizing Casuarina obesa Miq. Journal of Experimental Botany 42:427439.CrossRefGoogle Scholar
PAUL, E. A. & CLARK, F. E. 1989. Soil microbiology and biochemistry. Academic Press, San Diego. 359 pp.Google Scholar
POPE, G. V., POLHILL, E. S. & MARTINS, P. 2006. Flora Zambesiaca. Volume 9, Part 3. Royal Botanic Gardens, Kew, London.Google Scholar
PROCTOR, J. 1983. Tropical forest litterfall I. Problems of data comparison. Pp. 267273 in Sutton, S. L., Chadwick, T. C. & Whitmore, T.C. (eds.). Tropical rain forest: ecology and management. Blackwell Scientific Publications, Oxford.Google Scholar
QUESTED, H. M., PRESS, M. C., CALLAGHAN, T. V. & CORNELISSEN, J. H. C. 2002. The hemiparasitic angiosperm Bartsia alpina has the potential to accelerate decomposition in sub-arctic communities. Oecologia 130:8895.CrossRefGoogle ScholarPubMed
QUESTED, H. M., PRESS, M. C. & CALLAGHAN, T. V. 2003a. Litter of the hemiparasite Bartsia alpina enhances plant growth: evidence for a functional role in nutrient cycling. Oecologia 135:606614.CrossRefGoogle ScholarPubMed
QUESTED, H. M., CORNELISSEN, J. H. C., PRESS, M. C., CALLAGHAN, T. V., AERTS, R., TROSIEN, F., RIEMANN, P., GWYNN-JONES, D., KONDRATCHUK, A. & JONASSON, S. E. 2003b. Decomposition of sub-arctic plants with differing nitrogen economies: a functional role for hemiparasites. Ecology 84:32093221.CrossRefGoogle Scholar
RATTRAY, J. M. 1957. The grasses and grass associations of southern Rhodesia. Rhodesia Agriculture Journal 54:197234.Google Scholar
REED, J. D., HORVATH, J., ALLEN, M. S. & VAN SOEST, P. J. 1985. Gravimetric determination of soluble phenolics including tannins from leaves by precipitation with trivalent Ytterbium. Journal of the Science of Food and Agriculture 36:255261.CrossRefGoogle Scholar
ROBERTSON, G. P., SOLLINS, P., ELLIS, B. G. & LAJTHA, K. 1999. Exchangeable ions, pH, and cation exchange capacity. Pp. 106114 in Robertson, G. P., Bledsoe, C. S., Coleman, D. C. & Sollins, P. (eds.). Standard soil methods for long-term ecological research. Oxford University Press, New York.CrossRefGoogle Scholar
SALA, A., CARREY, E. V. & CALLAWAY, R. M. 2001. Dwarf mistletoe affects whole-tree water relations of Douglas fir and western larch primarily through changes in leaf to sapwood ratios. Oecologia 126:4252.CrossRefGoogle ScholarPubMed
SARAH, P. 2004. Soil sodium and potassium adsorption ratio along a Mediterranean arid transect. Journal of Arid Environments 59:731741.CrossRefGoogle Scholar
SARAH, P. 2006. Soil organic matter and land degradation in semi-arid area, Israel. Catena 67:5055.CrossRefGoogle Scholar
SCHLESINGER, W. H. & HASEY, M. M. 1981. Decomposition of chaparral shrubs foliage: losses of organic and inorganic constituents from deciduous and evergreen leaves. Ecology 62:762774.CrossRefGoogle Scholar
SCOTT, N. A. & BINKLEY, D. 1997. Foliage litter quality and annual net N mineralization: comparison across North American forested sites. Oecologia 111:151159.CrossRefGoogle Scholar
SPASOJEVIC, M. J. & SUDING, K. N. 2011. Contrasting effects of hemiparasites on ecosystem processes: can positive litter effects offset the negative effects of parasitism? Oecologia 165:193200.CrossRefGoogle ScholarPubMed
STARK, J. M. & FIRESTONE, M. K. 1995. Mechanisms for soil moisture effects on activity of nitrifying bacteria. Applied Environmental Microbiology 61:218221.CrossRefGoogle ScholarPubMed
STURSOVA, M., CRENSHAW, C. & SINSABAUGH, R. L. 2006. Microbial responses to long term N deposition in a semi-arid grassland. Microbial Ecology 51:9098.CrossRefGoogle Scholar
VAN DER KRIFT, T. A. J. & BERENDSE, F. 2001. The effect of plant species on soil nitrogen mineralization. Journal of Ecology 89:555561.CrossRefGoogle ScholarPubMed
VAN SOEST, P. J. 1963. Use of detergents in the analysis of fibrous feeds. II A rapid method for the determination of fiber and lignin. Journal of the Association of Official Analytical Chemists 46:830835.Google Scholar
WARD, H. K., RICHARDSON, F. D., DENNY, R. P. & DYE, P. T. 1979. Matopos Research Station: a perspective. Rhodesia Agriculture Journal 76:518.Google Scholar
WARDLE, D. A. 1992. A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biological Reviews 67:321358.CrossRefGoogle Scholar
WARDLE, D. A., BONNER, K. I. & NICHOLSON, K. S. 1997. Biodiversity and plant litter: experimental evidence which does not support the view that enhanced species richness improves ecosystem function. Oikos 79:247258.CrossRefGoogle Scholar
WATSON, D. M. 2009. Parasitic plants as facilitators: more Dryad than Dracula? Journal of Ecology 97:11511159.CrossRefGoogle Scholar
WEZEL, A., RAJOT, J. L. & HERBRIG, C. 2000. Influence of shrubs on soil characteristics and their function in Sahelian agro-ecosystems in semi-arid Niger. Journal of Arid Environments 44:383398.CrossRefGoogle Scholar
XU, Y. Q., LI, L. H., WANG, Q. B., CHEN, Q. S. & CHENG, W. X. 2007. The pattern between nitrogen mineralization and grazing intensities in an Inner Mongolian typical steppe. Plant and Soil 300:289300.CrossRefGoogle Scholar
ZAR, J. H. 1984. Biostatistical analysis. Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar