Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T03:04:49.009Z Has data issue: false hasContentIssue false

Fire favours expansion of bamboo-dominated forests in the south-west Amazon

Published online by Cambridge University Press:  17 December 2010

Maira Smith
Affiliation:
INPA – Instituto Nacional de Pesquisas da Amazônia, Av. André Araujo 2936, 69060-001 Manaus, Amazonas, Brazil
Bruce Walker Nelson*
Affiliation:
INPA – Instituto Nacional de Pesquisas da Amazônia, Av. André Araujo 2936, 69060-001 Manaus, Amazonas, Brazil
*
1Corresponding author. Email: bnelsonbr@gmail.com

Abstract:

Forests dominated by semi-scandent woody bamboos of the genus Guadua cover about 165 000 km2 of the south-west Amazon. Because many woody bamboo species are favoured by disturbance some authors have inferred this landscape to be a consequence of indigenous or natural disturbance. As seen in satellite images, the rounded edges of some bamboo-dominated forests indicate expansion into surrounding forest. These edges are unrelated to topography and resemble the borders of ground fires in unlogged Amazon forests, suggesting that bamboo may have been favoured by past fires. We studied the recovery of Guadua sarcocarpa and its competitors in the face of simulated fire by cutting all plant stems at ground level in ten 100-m2 plots, compared with ten control plots, and by burning a 2500-m2 plot. In the clear-cuts, bamboos recovered more successfully than did palms and dicots, by two measures: biomass accumulated and per cent recovery of pre-disturbance biomass. Resprouted bamboo attained higher stem densities than in control sites at 11 mo. In the burn plot, bamboo basal area recovered to pre-burn levels after 2 y and approached that of an undisturbed control area after 3 y. Though other natural disturbances are relevant, we conclude that forest fires should favour the spread and dominance of Guadua species in the south-west Amazon.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

BROWN, S., GILLESPIE, A. J. R. & LUGO, A. E. 1989. Biomass estimation methods for tropical forests with applications to forestry inventory data. Forest Science 35:881902.Google Scholar
FRANKLIN, D. C. & BOWMAN, D. J. M. S. 2003. Bamboo, fire and flood: regeneration of Bambusa arnhemica (Bambuseae: Poaceae) after mass-flowering and die-off at contrasting sites in monsoonal northern Australia. Australian Journal of Botany 51:529542.CrossRefGoogle Scholar
FRANKLIN, D. C., PRIOR, L. D., HOGARTH, N. J. & McMAHON, C. R. 2009. Bamboo, fire and flood: consequences of disturbance for the vegetative growth of a clumping, clonal plant. Plant Ecology 208:319332.CrossRefGoogle Scholar
GADGIL, M. & PRASAD, S. N. 1984. Ecological determinants of life history evolution of two Indian bamboo species. Biotropica 16:161172.CrossRefGoogle Scholar
GAGNON, P. R. & PLATT, W. J. 2008. Multiple disturbances accelerate clonal growth in a potentially monodominant bamboo. Ecology 89:612618.CrossRefGoogle Scholar
GAGNON, P. R., PLATT, W. J. & MOSER, E. B. 2007. Response of a native bamboo [Arundinaria gigantea (Walt.) Muhl.] in a wind-disturbed forest. Forest Ecology and Management 241:288294.CrossRefGoogle Scholar
GRISCOM, B. W. & ASHTON, P. M. S. 2006. A self-perpetuating bamboo disturbance cycle in a neotropical forest. Journal of Tropical Ecology 22:587597.CrossRefGoogle Scholar
HIJMANS, R. J., CAMERON, S. E., PARRA, J. L., JONES, P. G. & JARVIS, A. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25:19651978.CrossRefGoogle Scholar
KEELEY, J. E. & BOND, W. J. 1999. Mast flowering and semelparity in bamboos: the bamboo fire cycle hypothesis. American Naturalist 154:383391.CrossRefGoogle ScholarPubMed
MASCARENHAS, A. F. S., BRABO, E. S., SILVA, A. P., FAYAL, K. F., JESUS, I. M. & SANTOS, E. C. O. 2004. Avaliação da concentração de mercúrio em sedimentos e material particulado no rio Acre, estado do Acre, Brasil. Acta Amazonica 34:6168.CrossRefGoogle Scholar
NELSON, B. W. 1994. Natural forest disturbance and change in the Brazilian Amazon. Remote Sensing Reviews 10:105125.CrossRefGoogle Scholar
NELSON, B. W., MESQUITA, R., PEREIRA, J. L. G., AQUINO, DESOUZA, S. G., BATISTA, G. T. & COUTO, L. B. 1999. Allometric regressions for improved estimate of secondary forest biomass in the central Amazon. Forest Ecology and Management 117:149167.CrossRefGoogle Scholar
NEPSTAD, D. C., VERÍSSIMO, A., ALENCAR, A., NOBRE, C., LIMA, E., LEFEBVRE, P., SCHLESINGER, P., POTTER, C., MOUTINHO, P., MENDOZA, E., COCHRANE, M. & BROOKS, V. 1999. Large-scale impoverishment of Amazonian forests by logging and fire. Nature 398:505508.CrossRefGoogle Scholar
NOGUEIRA, E. M., NELSON, B. W., FEARNSIDE, P. M., FRANÇA, M. B. & OLIVEIRA, A. C. A. 2008. Tree height in Brazil's ‘arc of deforestation’: shorter trees in south and southwest Amazonia imply lower biomass. Forest Ecology and Management 255:29632972.CrossRefGoogle Scholar
OVERMAN, J. P. M., WITTE, H. J. L. & SALDARRIAGA, J. G. 1994. Evaluation of regression models for above-ground biomass determination in Amazon rainforest. Journal of Tropical Ecology 10:207218.CrossRefGoogle Scholar
PANTOJA, N. V. & BROWN, I. F. 2009. Estimativas de áreas afetadas pelo fogo no leste do Acre associadas à seca de 2005. Pp. 60296036 in Epiphânio, J. C. N. & Galvão, L. S. (eds.). Anais XIV SBSR. Simpósio Brasileiro de Sensoriamento Remoto. INPE, Natal, Brazil.Google Scholar
REGARD, V., LAGNOUS, R., ESPURT, N., DARROZES, J., BABY, P., RODDAZ, M., CALDERON, Y. & HERMOZA, W. 2009. Geomorphic evidence for recent uplift of the Fitzcarrald Arch (Peru): A response to the Nazca Ridge subduction. Geomorphology 107:107117.CrossRefGoogle Scholar
SALATI, E. & MARQUES, J. 1984. Climatology of the Amazon region. Pp. 85126 in Sioli, H. (ed.). The Amazon: limnology and landscape ecology of a mighty tropical river and its basin. Dr. W. Junk Publishers, Dordrecht.CrossRefGoogle Scholar
SILVEIRA, M. 1999. Ecological aspects of bamboo-dominated forests in southwestern Amazonia: an ethnoscience perspective. Ecotropica 5:213216.Google Scholar
SOMBROEK, W. G. 2001. Spatial and temporal patterns of Amazon rainfall – consequences for the planning of agricultural occupation and the protection of primary forests. Ambio 30:388396.CrossRefGoogle ScholarPubMed
STERN, M. J., JUDZIEWICZ, E. J. & CLARK, L. G. 1999. Bamboos in native landscapes. Pp. 5586 in Judziewicz, E. J., Clark, L. G., Londoño, X. & Stern, M. J. (eds.). American bamboos. Smithsonian Institution Press, Washington DC.Google Scholar
UHL, C., NEPSTAD, D., BUSCHBACHER, R., CLARK, K., KAUFFMAN, B. & SUBLER, S. 1990. Studies of ecosystem response to natural and anthropogenic disturbance provide guidelines for designing sustainable land-use systems in Amazonia. Pp. 2542 in Anderson, A. B. (ed.). Alternatives to deforestation: steps toward sustainable use of the Amazon rain forest. Columbia University Press, New York.Google Scholar
WONG, K. M. 1991. The growth architecture and ecology of some tropical bamboos. Journal of American Bamboo Society 8:4358.Google Scholar