Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T06:45:18.677Z Has data issue: false hasContentIssue false

A comparison of traditional elasticity and variance-standardized perturbation analyses: a case study with the tropical tree species Manilkara zapota (Sapotaceae)

Published online by Cambridge University Press:  01 March 2009

Juan Antonio Cruz-Rodríguez
Affiliation:
Departamento de Agroecología, Universidad Autónoma Chapingo, Chapingo 56230, Texcoco, Estado de México, México
Lauro López-Mata*
Affiliation:
Programa de Botánica, Colegio de Postgraduados, Montecillo 56230, Texcoco, Estado de México, México
Teresa Valverde
Affiliation:
Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, D.F. 04510, México
*
1Corresponding author. Current address: Departamento de Botánica, Instituto de Biología, UNAM, Tercer Circuito Externo s/n, Ciudad Universitaria, Coyoacán, México, D.F. 04510, México. Emails: lauro@colpos.mx and laurolopezmata@gmail.com

Abstract:

Knowledge of the population dynamics of tropical trees has expanded considerably in the past 20 years. An important observation deriving from these investigations is the confirmation that population behaviour varies both in time and space. A tool recently developed to evaluate the potential for variation in vital rates, and therefore in population growth rate, is variance-standardized perturbation analysis (VSPA). In this paper we report the results of a 2-y demographic analysis of a population of the tropical tree Manilkara zapota in a subtropical rain forest in the Mexican state of Veracruz, in which variance-standardized perturbation analysis was applied and compared with the results of the traditional elasticity analyses. To build population projection matrices, we tagged and followed a sample of 91 juvenile and adult individuals, and 635 seedlings. We subdivided the sample in nine size classes (defined by tree height and dbh; as well as leaf size, in the case of seedlings) and estimated transition probabilities and fecundity for each class. The demography of M. zapota varied greatly from the first to the second year of study (in 1998–1999, λ = 0.987, while in 1999–2000, λ = 1.038) due to negligible seed production during the first year and a massive reproductive event during the second. The largest elasticity values for both years corresponded to persistence of large juveniles and adults. Although the fecundity entries showed very low elasticity values, the variance-standardized perturbation analysis revealed the importance of these matrix entries; transition to larger categories and retrogression to smaller ones of saplings and juveniles were also important demographic processes contributing to variation in λ according to the VSPA. Thus, although the results of elasticity analysis and VSPA were similar for the 1998–1999 matrix, they differed substantially for the 1999–2000 matrix. In the latter, the VSPA enhanced the importance of demographic processes that are intuitively relevant for the population studied. This points toward the necessity of further exploring the use of VSPA, since it offers several advantages over the traditional elasticity analysis: it concentrates on the impact on λ of vital rates that actually vary, and the interpretation of the results is more realistic and straightforward.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ÁLVAREZ-BUYLLA, E. 1994. Density dependence and patch dynamics in tropical rain forests: matrix models and applications in tree species. American Naturalist 143:155191.Google Scholar
ÁLVAREZ-BUYLLA, E. & MARTÍNEZ-RAMOS, M. 1992. Demography and allometry of Cecropia obtusifolia, a neotropical pioneer tree-evaluation of the climax-pioneer paradigm for tropical rain forest. Journal of Ecology 80:275290.Google Scholar
ÁLVAREZ-BUYLLA, E., GARCÍA-BARRIOS, R., LARA-MORENO, C. & MARTÍNEZ-RAMOS, M. 1996. Demographic and genetic models in conservation biology: applications and perspectives for tropical rain forest tree species. Annual Review of Ecology and Systematics 27:387421.Google Scholar
BIERZYCHUDEK, P. 1999. Looking backwards: assessing the projections of a transition matrix model. Ecological Applications 9:12781287.Google Scholar
BONGERS, F., POPMA, J. & IRIARTE-VIVAR, S. 1988. Response of Cordia megalantha seedlings to gap environments in tropical rain forest. Functional Ecology 2:379390.Google Scholar
CANHAM, C. D. 1988. Growth and canopy architecture of shade tolerant trees: response to canopy gaps. Ecology 69:786795.Google Scholar
CASWELL, H. 2001. Matrix population models – construction, analysis and interpretation. (Second edition). Sinauer Associates Inc., Sunderland. 722 pp.Google Scholar
CASWELL, H., NISBEL, R. M., DE ROOS, A. M. & TULJAPURKAR, S. 1997. Structured-population models: many methods, a few basic concepts. Pp. 317 in Tulkapuljar, S. & Caswell, H. (eds.). Structured-populations models in marine, terrestrial and freshwater systems. Chapman and Hall, New York.Google Scholar
CONNELL, J. H. & GREEN, P. T. 2000. Seedling dynamics over thirty-two years in a tropical rain forest. Ecology 81:568584.CrossRefGoogle Scholar
CONTRERAS, C. & VALVERDE, T. 2002. Evaluation of the conservation status of a rare cactus (Mammillaria crucigera) through the analysis of its population dynamics. Journal of Arid Environments 51:89102.Google Scholar
CRUZ-RODRÍGUEZ, J. A. 2007. Dinámica poblacional de Manilkara zapota (L.) Royen, en una Selva Mediana Subperennifolia del Centro de Veracruz. Ph.D. Dissertation, Colegio de Postgraduados, Estado de México. 127 pp.Google Scholar
CRUZ-RODRÍGUEZ, J. A. & LÓPEZ-MATA, L. 2004. Demography of the seedling bank of Manilkara zapota (L.) Royen, in a subtropical rain forest of Mexico. Plant Ecology 172:227235.Google Scholar
DE KROON, H., PLAISIER, A., VAN GROENENDAEL, J. & CASWELL, H. 1986. Elasticity: the relative contribution of demographic parameters to population growth rate. Ecology 67:14271431.Google Scholar
DE KROON, H., VAN GROENENDAEL, J. & EHRLÉN, J. 2000. Elasticities: a review of methods and model limitations. Ecology 81:607618.CrossRefGoogle Scholar
DE STEVEN, D. 1994. Tropical tree seedling dynamics: recruitment patterns and their populations consequences for three canopy species in Panama. Journal of Tropical Ecology 10:369383.Google Scholar
EHRLÉN, J. & VAN GROENENDAEL, J. 1998. Direct perturbation analyses for better conservation. Conservation Biology 12:470474.Google Scholar
ENRIGHT, N. J. & OGDEN, J. 1979. Applications of transitions matrix models in forest dynamics: Araucaria in Papua New Guinea and Nothofagus in New Zealand. Australian Journal of Ecology 4:323.Google Scholar
FERSON, S. 1990. Ramas-Stage. Generalized stage-based modeling for population dynamics. Applied Biomathematics. Setauket, New York. 108 pp.Google Scholar
FRANCO, M. & SILVERTOWN, J. 2004. A comparative demography of plants based upon elasticities of vital rates. Ecology 85:531538.Google Scholar
GODÍNEZ-IBARRA, O. & LÓPEZ-MATA, L. 2002. Estructura, composición, riqueza y diversidad de árboles en tres muestras de selva mediana subperennifolia. Anales del Instituto de Biología, Universidad Nacional Autónoma de México, Serie Botánica 73:283314.Google Scholar
GÓMEZ-POMPA, A. 1977. Ecología de la Vegetación de Veracruz. INIREB, Xalapa. 91 pp.Google Scholar
HARTSHORN, G. 1972. The ecological life history and population dynamics of Pentaclethra macroloba, a wet forest dominant and Stryphnodendron excelsum, an occasional associate. Ph.D. Dissertation, Washington University, Seattle. 118 pp.Google Scholar
HERNÁNDEZ-APOLINAR, M., VALVERDE, T. & PURATA, S. 2006. Demography of Bursera glabrifolia, a tropical tree used for folk woodcrafting in southern Mexico: evaluation of its management plan. Forest Ecology and Management 223:139151.Google Scholar
HORVITZ, C. C. & SCHEMSKE, D. W. 1995. Spatiotemporal variation in demographic transitions of a tropical understory herb: projection matrix analysis. Ecological Monographs 65:155192.Google Scholar
HORVITZ, C. C., SCHEMSKE, D. W. & CASWELL, H. 1997. The relative “importance” of life-history stages to population growth: prospective and retrospective analyses. Pp. 247271 in Tuljapulkar, S. & Caswell, H. (eds.). Structured-populations models in marine, terrestrial and freshwater systems. Chapman and Hall, New York.Google Scholar
JANZEN, D. H. 1976. Seeding patterns of tropical trees. Pp. 83128 in Tomlinson, P. B. & Zimmermann, M. H. (eds.). Tropical trees as living systems. Cambridge University Press, Cambridge.Google Scholar
JIMÉNEZ-LOBATO, V. & VALVERDE, T. 2006. Population dynamics of the shrub Acacia bilimekii in a semidesert region in central Mexico. Journal of Arid Environments 65:2945.Google Scholar
LIEBERMAN, D. 1996. Demography of tropical tree seedlings: a review. Pp. 131138 in Swaine, M. D. (ed.). Ecology of tropical forest tree seedlings. UNESCO, Paris; Parthenon, Carnforth.Google Scholar
MARTÍNEZ-BALLESTÉ, A., MARTORELL, C., MARTÍNEZ-RAMOS, M. & CABALLERO, J. 2005. Applying retrospective demographic models to assess sustainable use: the Maya management of Sabal palms. Ecology and Society 10:17. URL: http://www.ecologyandsociety.org/vol10/iss2/art17/Google Scholar
MARTÍNEZ-RAMOS, M., SARUKHÁN, J. & PIÑERO, D. 1988. The demography of tropical trees in the context of gap dynamics: the case of Astrocaryum mexicanum at Los Tuxtlas tropical rain forest. Pp. 293313 in Davy, A. J., Hutchings, M. J. & Watkinson, A. R. (eds.). Plant population ecology. Blackwell Science, Oxford.Google Scholar
MENGES, E. S. 2000. Population viability analysis in plants: challenges and opportunities. Trends in Ecology and Evolution 15:5156.Google Scholar
MIRANDA, F. & HERNÁNDEZ-X, E. 1963. Los tipos de vegetación de México y su clasificación. Boletín de la Sociedad Botánica de México 28:29179.Google Scholar
OLMSTED, I. & ÁLVAREZ-BUYLLA, E. 1995. Sustainable harvesting of tropical tree: demography and matrix models of two palm species in Mexico. Ecological Applications 5:485500.Google Scholar
PENNINGTON, T. D. & SARUKHÁN, J. 1998. Árboles tropicales de México. (Second edition). Universidad Nacional Autónoma de México y Fondo de Cultura Económica, México, D.F. 521 pp.Google Scholar
PETERS, C. M. 1991. Plant demography and the management of tropical forest resources: a case study of Brosimum alicastrum in Mexico. Pp. 265272 in Gómez-Pompa, A., Whitmore, T. C. & Hadley, M. (eds.). Rain forest regeneration and management, MAB Series, volume 6. UNESCO and Parthenon Publishing Group, Carnforth.Google Scholar
PIÑERO, D., MARTÍNEZ-RAMOS, M. & SARUKHÁN, J. 1984. A population model of Astrocaryum mexicanum and a sensitivity analysis of its rate of increase. Journal of Ecology 72: 977991.Google Scholar
PULIDO, M. T., VALVERDE, T. & CABALLERO, J. 2007. Variation in the population dynamics of the palm Sabal yapa in a landscape shaped by shifting cultivation in the Yucatan Peninsula, Mexico. Journal of Tropical Ecology 23:139149.Google Scholar
SASAKI, S. & MORI, T. 1981. Growth responses of dipterocarp seedling to light. Malayan Forester 44:319345.Google Scholar
SARUKHÁN, J. 1976. Studies on the demography of tropical trees. Pp. 163184 in Tomlinson, P. B. & Zimmermann, M. H. (eds.). Tropical trees as living systems. Cambridge University Press, Cambridge.Google Scholar
SILVERTOWN, J., FRANCO, M., PISANTY, I. & MENDOZA, A. 1993. Comparative plant demography – relative importance of life-cycle components to the finite rate of increase in woody and herbaceous perennials. Journal of Ecology 81:465476.CrossRefGoogle Scholar
SWAINE, M. D. 1996. Foreword. Pp. xxixxviii in Swaine, M. D. (ed.). The ecology of tropical forest tree seedlings. MAB Series, volume 17. UNESCO and Parthenon Publishing Group, Carnforth.Google Scholar
TULJAPURKAR, S. 1997. Stochastic matrix models. Pp. 5987 in Tulkapuljar, S. & Caswell, H. (eds.). Structured-populations models in marine, terrestrial and freshwater systems. Chapman and Hall, New York.Google Scholar
UHL, C., CLARK, K., DEZZEO, N. & MAQUIRINO, P. 1988. Vegetation dynamics in Amazonian treefall gaps. Ecology 69:751763.Google Scholar
VALVERDE, T., QUIJAS, S., LÓPEZ-VILLAVICENCIO, M. & CASTILLO, S. 2004. Population dynamics of Mammillaria magnimamma Haworth (Cactaceae) in a lava-field in Central Mexico. Plant Ecology 170:167184.Google Scholar
VALVERDE, T., HERNÁNDEZ-APOLINAR, M. & MENDOZA-AMARO, S. 2006. Effect of leaf harvesting on the demography of the tropical palm Chamaedorea elegans in South-eastern Mexico. Journal of Sustainable Forestry 23:85105.Google Scholar
WISDOM, M. J. & MILLS, L. S. 1997. Using sensitivity analysis to guide populations recovery: Prairie Chickens as an example. Journal of Wildlife Management 61:302312.Google Scholar
ZAGT, R. J. 1997. Tree demography in the tropical rain forest of Guyana. Ph.D. Dissertation, Utrecht University, Utrecht. 251 pp.Google Scholar
ZAGT, R. J. & BOOT, R. G. A. 1997. The response of tropical trees to logging: a caution applications of matrix models. Pp. 167214 in Zagt, R. J. (ed.). Tree demography in the tropical rain forest of Guyana. Tropenbos-Guyana Series 3. Georgetown, Guyana.Google Scholar
ZUIDEMA, P. A. 2000. Demography of exploited tree species in the Bolivian Amazon. Ph.D. Dissertation, Utrecht University, Utrecht. 240 pp.Google Scholar
ZUIDEMA, P. A. & FRANCO, M. 2001. Integrating vital rate variability into perturbation analyses: an evaluation for matrix population models of six plant species. Journal of Ecology 89:9951005.Google Scholar