Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T08:47:26.277Z Has data issue: false hasContentIssue false

Does the abundance of dominant trees affect diversity of a widespread tropical woodland ecosystem in Tanzania?

Published online by Cambridge University Press:  08 June 2015

Deo D. Shirima*
Affiliation:
Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway Department of Forest Biology, Faculty of Forestry and Nature Conservation, Sokoine University of Agriculture, P.O. Box 3010, Chuo Kikuu, Morogoro, Tanzania
Ørjan Totland
Affiliation:
Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
Pantaleo K. T. Munishi
Affiliation:
Department of Forest Biology, Faculty of Forestry and Nature Conservation, Sokoine University of Agriculture, P.O. Box 3010, Chuo Kikuu, Morogoro, Tanzania
Stein R. Moe
Affiliation:
Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
*
1Corresponding author. Email: dshirima2@gmail.com

Abstract:

Dominant woody species can determine the structure and composition of a plant community by affecting environmental conditions experienced by other species. We explored how dominant tree species affect the tree species richness, diversity, evenness and vertical structural heterogeneity of non-dominant species in wet and dry miombo woodlands of Tanzania. We sampled 146 plots from eight districts with miombo woodlands, covering a wide range of topographic and climatic conditions. We recorded 217 woody plant species belonging to 48 families and 122 genera. Regression analysis showed significant negative linear associations between tree species richness, relative species profile index of the non-dominant and the relative abundance of the dominant tree species (Brachystegia spiciformis and Brachystegia microphylla in wet, and Brachystegia spiciformis and Julbernardia globiflora in dry miombo woodlands). Shannon diversity and evenness had strong non-linear negative relationships with relative abundance of dominant tree species. A large number of small individual stems from dominant and non-dominant tree species suggesting good regeneration conditions, and intensive competition affecting survival. We suggest that dominant miombo tree species are suppressing the non-dominant miombo tree species, especially in areas with high recruitments, perhaps because of their important adaptive features (extensive root systems and ectomycorrhizal associations), which enhance their ability to access limited nutrients.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

AHRENDS, A., BURGESS, N. D., MILLEDGE, S. A. H., BULLING, M.T., FISHER, B., SMART, J. C. R., CLARKE, G. P., MHORO, B. E. & LEWIS, S. L. 2010. Predictable waves of sequential forest degradation and biodiversity loss spreading from an African city. Proceedings of the National Academy of Sciences USA 107:1455614561.CrossRefGoogle ScholarPubMed
ANGELINI, C., ALTIERI, A. H., SILLIMAN, B. R. & BERTNESS, M. D. 2011. Interactions among foundation species and their consequences for community organization, biodiversity, and conservation. BioScience 61:782789.CrossRefGoogle Scholar
, A. M., DUPONNOIS, R., MOYERSOEN, B. & DIÉDHIOU, A. G. 2012. Ectomycorrhizal symbiosis of tropical African trees. Mycorrhiza 22:129.CrossRefGoogle ScholarPubMed
BACKÉUS, I., PETTERSSON, B., STRÖMQUIST, L. & RUFFO, C. 2006. Tree communities and structural dynamics in miombo (Brachystegia & Julbernardia) woodland, Tanzania. Forest Ecology and Management 230:171178.CrossRefGoogle Scholar
BANDA, T., SCHWARTZ, M. W. & CARO, T. 2006. Woody vegetation structure and composition along a protection gradient in a miombo ecosystem of Western Tanzania. Forest Ecology and Management 230:179185.CrossRefGoogle Scholar
BERTNESS, M. D. & CALLAWAY, R. 1994. Positive interactions in communities. Trends Ecology and Evolution 9:191193.CrossRefGoogle ScholarPubMed
CAMPBELL, B., FROST, P. & BYRON, N. 1996. Miombo woodlands and their use: overview and key issues. Pp. 110 in Campbell, B. (ed.). The miombo in transition: woodlands and welfare in Africa. Center for International Forestry Research (CIFOR), Bogor.Google Scholar
CARO, T. 2010. Conservation by proxy: indicator, umbrella, keystone, flagship, and other surrogate species. Island Press, Washington. 374 pp.Google Scholar
CHAMSHAMA, S. A. O. & VYAMANA, V. 2010. Forests and forestry in Tanzania. Pp. 89108 in Bongers, F. & Tennigkeit, T. (eds.). Degraded forests in eastern Africa: management and restoration. Earthscan, London.Google Scholar
CHAO, A., GOTELLI, N. J., HSIEH, T. C., SANDER, E. L., MA, K. H., COLWELL, R. K. & ELLISON, A. M. 2014. Rarefaction and extrapolation with hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs 84:4567.CrossRefGoogle Scholar
CHIDUMAYO, E. N. 2013. Forest degradation and recovery in a miombo woodland landscape in Zambia: 22 years of observations on permanent sample plots. Forest Ecology and Management 291:154161.CrossRefGoogle Scholar
CHIDUMAYO, E. N. & GUMBO, D. J. 2010. The dry forests and woodlands of Africa: managing for products and services. Earthscan, London. 288 pp.CrossRefGoogle Scholar
COLWELL, R. K., CHAO, A., GOTELLI, N. J., LIN, S.Y., MAO, C. X., CHAZDON, R. L. & LONGINO, J. T. 2012. Models and estimators linking individual based and sample based rarefaction, extrapolation, and comparison of assemblages. Journal of Plant Ecology 5:321.CrossRefGoogle Scholar
CONNELL, J. H. 1978. Diversity in tropical rain forests and coral reefs. Science 199:13021310.CrossRefGoogle ScholarPubMed
DAYTON, P. 1972. Toward an understanding of community resilience and the potential effects of enrichment to the benthos at McMurdo Sound, Antarctica. Pp. 8196 in Parker, B. C. (ed.). Proceedings of the colloquium on conservation problems in Antarctica. Allen Press, Lawrence.Google Scholar
DEWEES, P. A., CAMPBELL, B. M., KATERERE, Y., SITOE, A., CUNNINGHAM, A. B., ANGELSEN, A. & WUNDER, S. 2011. Managing the miombo woodlands of Southern Africa: policies, incentives, and options for the rural poor. Program on Forests (PROFOR), Washington DC. 74 pp.CrossRefGoogle Scholar
DICKSON, T. L. & GROSS, K. L. 2013. Plant community responses to long-term fertilization: changes in functional group abundance drive changes in species richness. Oecologia 173:15131520.CrossRefGoogle ScholarPubMed
DIÉDHIOU, A., GUÈYE, O., DIABATÉ, M., PRIN, Y., DUPONNOIS, R., DREYFUS, B. & , A. 2005. Contrasting responses to ectomycorrhizal inoculation in seedlings of six tropical African tree species. Mycorrhiza 16:1117.CrossRefGoogle ScholarPubMed
DJUIKOUO, M. N., PEH, K. S. H., NGUEMBOU, C. K., DOUCET, J. L., LEWIS, S. L. & SONKÉ, B. 2014. Stand structure and species co-occurrence in mixed and monodominant Central African tropical forests. Journal of Tropical Ecology 30:447455.CrossRefGoogle Scholar
ELLISON, A. M., BANK, M. S., CLINTON, B. D., COLBURN, E. A., ELLIOTT, K., FORD, C. R., FOSTER, D. R., KLOEPPEL, B. D., KNOEPP, J. D., LOVETT, G. M., MOHAN, J., ORWIG, D. A., RODENHOUSE, N. L., SOBCZAK, W. V., STINSON, K. A., STONE, J., SWAN, C. M., THOMPSON, J., HOLLE, B. V., & WEBSTER, J. R. 2005. Loss of foundation species: consequences for the structure and dynamics of forested ecosystems. Frontiers in Ecology and the Environment 3:479486.CrossRefGoogle Scholar
ERNST, W. H. O. 1988. Seed and seedling ecology of Brachystegia spiciformis, a predominant tree component in miombo woodlands in South Central Africa. Forest Ecology and Management 25:195210.CrossRefGoogle Scholar
FROST, P. 1996. The ecology of miombo woodlands. Pp. 1157 in Campbell, B. (ed.) The miombo in transition: woodlands and welfare in Africa. Center for International Forestry Research (CFIOR), Bogor.Google Scholar
GOSLEE, S. 2006. Behavior of vegetation sampling methods in the presence of spatial autocorrelation. Plant Ecology 187:203212.CrossRefGoogle Scholar
GRIME, J. 1998. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. Journal of Ecology 86:902910.CrossRefGoogle Scholar
HUSTON, M. 1979. A general hypothesis of species diversity. American Naturalist 113:81101.CrossRefGoogle Scholar
LEI, X., WANG, W. & PENG, C. 2009. Relationships between stand growth and structural diversity in spruce-dominated forests in New Brunswick, Canada. Canadian Journal of Forest Research 39:18351847.CrossRefGoogle Scholar
MAKANA, J. R., TERESE, B. H., HIBBS, D. E. & CONDIT, R. 2004. Stand structure and species diversity in the Ituri forest dynamics plots: a comparison of monodominant and mixed forest stands. Pp 159174 in Losos, E. C. & Leigh, E. G. (eds.). Tropical forest diversity and dynamism. University of Chicago Press, Chicago.Google Scholar
MALIMBWI, R. E., SOLBERG, B. & LUOGA, E. 1994. Estimation of biomass and volume in miombo woodland at Kitulangalo forest reserve, Tanzania. Journal of Tropical Forest Science 7:230242.Google Scholar
MARIOTTE, P., BUTTLER, A., KOHLER, F., GILGEN, A. K. & SPIEGELBERGER, T. 2013. How do subordinate and dominant species in semi-natural mountain grasslands relate to productivity and land-use change? Basic and Applied Ecology 14:217224.CrossRefGoogle Scholar
MARTIN, K. L. & GOEBEL, P. C. 2013. The foundation species influence of eastern hemlock (Tsuga canadensis) on biodiversity and ecosystem function on the unglaciated Allegheny Plateau. Forest Ecology and Management 289:143152.CrossRefGoogle Scholar
MUNISHI, P. K. T., MRINGI, S., SHIRIMA, D. D. & LINDA, S. 2010. The role of the miombo woodlands of the southern highlands of Tanzania as carbon sinks. Journal of Ecology and Natural Environment 2:261269.Google Scholar
MUNISHI, P. K. T., TEMU, R. P. C. & SOKA, G. 2011. Plant communities and tree species associations in a miombo ecosystem in the Lake Rukwa basin, Southern Tanzania: implications for conservation. Journal of Ecology and Natural Environment 3:6371.Google Scholar
MUNYANZIZA, E. 1994. Miombo trees and mycorrhizae: ecological strategies, a basis for afforestation. PhD thesis. Landbouwuniversiteit te Wageningen, Netherlands. 193 pp.Google Scholar
PEH, K. S. H., LEWIS, S. L. & LIOYD, J. 2011. Mechanisms of monodominance in diverse tropical tree-dominated systems. Journal of Ecology 99:891898.CrossRefGoogle Scholar
PEH, K. S. H., SONKÉ, B., SÉNÉ, O., DJUIKOUO, M. N. K., NGUEMBOU, C. K., TAEDOUMG, H., BEGNE, S. K. & LEWIS, S. L. 2014. Mixed-forest species establishment in a monodominant forest in central Africa: implications for tropical forest invasibility. PLoS ONE 9: e97585.CrossRefGoogle Scholar
PETERSON, M. L., RICE, K. J. & SEXTON, J. P. 2013. Niche partitioning between close relatives suggests trade-offs between adaptation to local environments and competition. Ecology and Evolution 3:512522.Google ScholarPubMed
PIELOU, E. C. 1969. An introduction to mathematical ecology. Biometrische Zeitschrift 13:219220.Google Scholar
PLATTS, P. J., OMENY, P. A. & MARCHANT, R. 2014. AFRICLIM: high-resolution climate projections for ecological applications in Africa. African Journal of Ecology 53:103108.CrossRefGoogle Scholar
PRETZSCH, H. 1996. Strukturvielfalt als Ergebnis waldbaulichen Handels. Allgemeine Forst und Jagdzeitung 167:213221.Google Scholar
PRETZSCH, H. 1998. Structural diversity as a result of silvicultural operations. Lesnictvi-forestry 44:429439.Google Scholar
RUNYAN, C. W., D’ODORICO, P. & LAWRENCE, D. 2012. Effect of repeated deforestation on vegetation dynamics for phosphorus limited tropical forests. Biogeosciences 117:G01008.Google Scholar
RYAN, C. M. & WILLIAMS, M. 2010. How does fire intensity and frequency affect miombo woodland tree populations and biomass? Ecological Applications 21:4860.CrossRefGoogle Scholar
SCHWARTZ, M. W. & CARO, T. M. 2003. Effect of selective logging on tree and understory regeneration in miombo woodland in western Tanzania. African Journal of Ecology 41:7582.CrossRefGoogle Scholar
SCOTT, C. T. 1998. Sampling methods for estimating change in forest resources. Ecological Applications 8:228233.CrossRefGoogle Scholar
SHANNON, C. E. 1948. The mathematical theory of communication. University of Illinois Press, Urbana. 96 pp.Google Scholar
SHIRIMA, D. D., TOTLAND, Ø., MUNISHI, P. K. T. & MOE, S. R. 2014. Relationships between tree species richness, evenness and aboveground carbon storage in montane forests and miombo woodlands of Tanzania. Basic and Applied Ecology 16:239249.CrossRefGoogle Scholar
SMEE, D. 2012. Species with a large impact on community structure. Nature Education Knowledge 3:40.Google Scholar
SPINAGE, C. A. 2012. African ecology – benchmarks and historical perspective. Springer, New York. 1562 pp.CrossRefGoogle Scholar
STOHLGREN, T. J., FALKNER, M. B. & SCHELL, L. D. 1995. A modified-Whittaker nested vegetation sampling method. Vegetatio 117:113121.CrossRefGoogle Scholar
TILMAN, D. 1985. The resource ratio hypothesis of plant succession. American Naturalist 125:827852.CrossRefGoogle Scholar
TRAPNELL, C. G. 1959. Ecological results of woodland and burning experiments in Northern Rhodesia. Journal of Ecology 47:129168.CrossRefGoogle Scholar
WHITE, F. 1983. The vegetation of Africa, a descriptive memoir to accompany the UNESCO/AETFAT/UNSO vegetation map of Africa (3 Plates, Northwestern Africa, Northeastern Africa, and Southern Africa, 1: 5,000,000). United Nations Educational, Scientific and Cultural Organization, Paris. 356 pp.Google Scholar
ZUUR, A., IENO, E. N., WALKER, N., SAVELIEV, A. A. & SMITH, G. M. 2009. Mixed effects models and extensions in ecology with R. Springer, New York. 574 pp.CrossRefGoogle Scholar
ZUUR, A. F., IENO, E. N. & ELPHICK, C. S. 2010. A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution 1:314.CrossRefGoogle Scholar