Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T19:55:15.490Z Has data issue: false hasContentIssue false

Dispersal limitation in epiphytic bromeliad communities in a Costa Rican fragmented montane landscape

Published online by Cambridge University Press:  01 January 2009

Alfredo Cascante-Marín*
Affiliation:
Institute for Biodiversity and Ecosystem Dynamics (IBED), Universiteit van Amsterdam, Kruislaan 318, NL-1098 SM Amsterdam, the Netherlands
Noemi von Meijenfeldt
Affiliation:
Institute for Biodiversity and Ecosystem Dynamics (IBED), Universiteit van Amsterdam, Kruislaan 318, NL-1098 SM Amsterdam, the Netherlands
Hanneke M. H. de Leeuw
Affiliation:
Institute for Biodiversity and Ecosystem Dynamics (IBED), Universiteit van Amsterdam, Kruislaan 318, NL-1098 SM Amsterdam, the Netherlands
Jan H. D. Wolf
Affiliation:
Institute for Biodiversity and Ecosystem Dynamics (IBED), Universiteit van Amsterdam, Kruislaan 318, NL-1098 SM Amsterdam, the Netherlands
J. Gerard B. Oostermeijer
Affiliation:
Institute for Biodiversity and Ecosystem Dynamics (IBED), Universiteit van Amsterdam, Kruislaan 318, NL-1098 SM Amsterdam, the Netherlands
Joannes C. M. den Nijs
Affiliation:
Institute for Biodiversity and Ecosystem Dynamics (IBED), Universiteit van Amsterdam, Kruislaan 318, NL-1098 SM Amsterdam, the Netherlands
*
1Corresponding author. Present address: Departamento de Historia Natural, Museo Nacional de Costa Rica, Apartado 749-1000 San José, Costa Rica. Email: alfredo.cascante@gmail.com

Abstract:

Transformation of tropical forests is likely to affect seed-dispersal patterns and influence the composition of epiphytic plant communities in human-altered habitats. We tested this hypothesis by carrying out a comparative study of seed influx, survival and growth of transplanted seedlings of epiphytic bromeliads among isolated trees in six pasture areas, six forest edges and six forest sites in a montane area in Costa Rica. In total, 72 traps trapped 1285 seeds over a 2-mo period in the dry season of 2003. For all four investigated bromeliad genera, Catopsis, Guzmania, Tillandsia and Werauhia, the number of trapped seeds in each habitat followed a pattern similar to the number of fruiting individuals in the vicinity of the traps. Traps in forest edges (30) were 1.9 times more likely to collect seeds than traps at forest interiors (30) and pasture trees (12), the latter showing similar probabilities of catching seeds. After 1 y, survival and growth of 3660 transplanted seedlings from three bromeliad species was significantly higher in forest interiors, providing no explanation for the lower abundance of fruiting adults in that habitat. These results suggest that the successful establishment of epiphytic bromeliads in forest interiors is mainly dispersal-limited. If corroborated, differences in abundance among species at each habitat are likely related to differences in growth rates and reproductive success. Further studies on the growth and mortality of seedlings up to the flowering stage, however, are needed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ACKERMAN, J. D., SABAT, A. & ZIMMERMAN, J. K. 1996. Seedling establishment in an epiphytic orchid: an experimental study of seed limitation. Oecologia 106:192198.CrossRefGoogle Scholar
BACLES, C. F. E., LOWE, A. J. & ENNOS, R. A. 2006. Effective seed dispersal across a fragmented landscape. Science 311:628.CrossRefGoogle ScholarPubMed
BARTHLOTT, W., SCHMIT-NEUERBURG, V., NIEDER, J. & ENGWALD, S. 2001. Diversity and abundance of epiphytes: a comparison of secondary vegetation and primary montane rain forest in the Venezuelan Andes. Plant Ecology 152:145156.Google Scholar
BENNETT, B. C. 1986. Patchiness, diversity, and abundance relationships of vascular epiphytes. Selbyana 9:7075.Google Scholar
BENZING, D. H. 1990. Vascular epiphytes: general biology and related biota. Cambridge University Press, New York. 354 pp.Google Scholar
BENZING, D. H. & RENFROW, A. 1971. The significance of photosynthetic efficiency to habitat preference and phylogeny among tillandsioid bromeliads. Botanical Gazette 132:1930.Google Scholar
CALLAWAY, R. M., REINHART, K. O., MOORE, G. W., MOORE, D. J. & PENNINGS, S. C. 2002. Epiphyte host preferences and host traits: mechanisms for species-specific interactions. Oecologia 132:221230.CrossRefGoogle ScholarPubMed
CASCANTE-MARÍN, A., OOSTERMEIJER, J. G. B., WOLF, J. H. D. & DEN NIJS, J. C. M. 2005. Reproductive biology of the epiphytic bromeliad Werauhia gladioliflora in a premontane tropical forest. Plant Biology 7:203209.Google Scholar
CASCANTE-MARÍN, A., WOLF, J. H. D., OOSTERMEIJER, J. G. B., DE NIJS, J. C. M., SANAHUJA, O. & DURÁN-APUY, A. 2006a. Epiphytic bromeliad communities in secondary and mature forest in a premontane area, Costa Rica. Basic and Applied Ecology 7:520532.CrossRefGoogle Scholar
CASCANTE-MARÍN, A., DE JONG, M., BORG, E., OOSTERMEIJER, J. G. B., WOLF, J. H. D. & DE NIJS, J. C. M. 2006b. Reproductive strategies and colonization ability of two sympatric epiphytic bromeliads in a tropical premontane area. International Journal of Plant Sciences 167;11871195.CrossRefGoogle Scholar
CASCANTE-MARÍN, A., WOLF, J. H. D., OOSTERMEIJER, J. G. B. & DEN NIJS, J. C. M. 2008. Establishment of epiphytic bromeliads in successional tropical premontane forests in Costa Rica. Biotropica 40:441448.Google Scholar
CASTRO-HERNÁNDEZ, J. C., WOLF, J. H. D., GARCÍA-FRANCO, J. G. & GONZÁLEZ-ESPINOSA, M. 1999. The influence of humidity, nutrients and light on the establishment of the epiphytic bromeliad Tillandsia guatemalensis in the highlands of Chiapas, Mexico. Revista de Biología Tropical 47:763773.Google Scholar
DRESSLER, R. L. 1990. The orchids: natural history and classification. Harvard University Press, Cambridge. 332 pp.Google Scholar
DUNN, R. R. 2000. Bromeliad communities in isolated trees and three successional stages of an Andean Cloud Forest in Ecuador. Selbyana 21:137143.Google Scholar
FAHRIG, L. 2003. Effects of habitat fragmentation on biodiversity. Annual Review of Ecology and Systematics 34:487515.CrossRefGoogle Scholar
FAO (FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS) 2003. The state of the world's forests 2003. FAO, Rome. 100 pp.Google Scholar
FLORES-PALACIOS, A. & GARCÍA-FRANCO, J. G. 2004. Effect of isolation on the structure and nutrient content of oak epiphyte communities. Plant Ecology 173:259269.Google Scholar
FLORES-PALACIOS, A. & GARCÍA-FRANCO, J. G. 2008. Habitat isolation changes the beta diversity of the vascular epiphyte community in lower montane forest, Veracruz, Mexico. Biodiversity and Conservation 17:191207.Google Scholar
FREI, J. K. & DODSON, C. H. 1972. The chemical effect of certain bark substrates on the germination of early growth epiphytic orchids. Bulletin of the Torrey Botanical Club 99:301307.Google Scholar
GENTRY, A. H. & DODSON, C. 1987. Contribution of nontrees to species richness of a tropical rainforest. Biotropica 19:149156.Google Scholar
GRIFFITH, K., PECK, D. C. & STUCKEY, J. 2000. Agriculture in Monteverde: moving toward sustainability. Pp. 389418 in Nadkarni, N. M. & Wheelwright, N. T. (eds.). Monteverde: ecology and conservation of a tropical cloud forest. Oxford Press, New York.Google Scholar
GUEVARA, S., MEAVE, J., MORENO-CASASOLA, P. & LABORDE, J. 1992. Floristic composition and structure of vegetation under isolated trees in neotropical pastures. Journal of Vegetation Science 3:655664.Google Scholar
HABER, W. A. 2000. Plants and vegetation. Pp. 3963 in Nadkarni, N. M. & Wheelwright, N. T. (eds.). Monteverde: ecology and conservation of a tropical cloud forest. Oxford University Press, New York.Google Scholar
HARVEY, C. A. & HABER, W. A. 1999. Remnant trees and the conservation of biodiversity in Costa Rican pastures. Agroforestry Systems 44:3768.Google Scholar
HIETZ, P. 2005. Conservation of vascular epiphyte diversity in Mexican coffee plantations. Conservation Biology 19:391399.CrossRefGoogle Scholar
HIETZ-SEIFERT, U., HIETZ, P. & GUEVARA, S. 1996. Epiphyte vegetation and diversity on remnant trees after forest clearance in southern Veracruz, Mexico. Biological Conservation 75:103111.CrossRefGoogle Scholar
HUBBELL, S. P. 2001. The unified neutral theory of biodiversity and biogeography. Monographs in Population Biology No. 32. Princeton University Press, Princeton. 375 pp.Google Scholar
HURTT, G. C. & PACALA, S. W. 1995. The consequences of recruitment limitation: reconciling chance, history and competitive differences between plants. Journal of Theoretical Biology 176:112.Google Scholar
JOHANSSON, D. R. 1975. Ecology of epiphytic orchids in West African rain forests. American Orchid Society Bulletin 44:125136.Google Scholar
KLEIN, J. P. & MOESCHBERGER, M. L. 1997. Survival analysis: techniques for censored and truncated data. Springer-Verlag, New York. 502 pp.CrossRefGoogle Scholar
KRÖMER, T. & GRADSTEIN, S. R. 2003. Species richness of vascular epiphytes in two primary forests and fallows in the Bolivian Andes. Selbyana 24:190195.Google Scholar
LOVEJOY, T. E., BIERREGAARD, R. O., RYLANDS, A. B., MALCOLM, J. R., QUINTELA, C. E., HARPER, L. H., BROWN, K. S., POWELL, A. H., POWELL, G. V. N., SCHUBART, H. O. R. & HAYS, M. B. 1986. Edge and other effects of isolation on Amazon forest fragments. Pp. 257285 in Soulé, M. E. (ed.). Conservation Biology: the science of scarcity and diversity. Sinauer Associates Inc., Sunderland. 583 pp.Google Scholar
MALANSON, G. P. & ARMSTRONG, M. P. 1996. Dispersal probability and forest diversity in a fragmented landscape. Ecological Modelling 87:91102.Google Scholar
MARTIN, C. E. 1994. Physiological ecology of Bromeliaceae. Botanical Review 60:182.Google Scholar
McCULLAGH, P. & NELDER, J. A. 1989. Generalized linear models. (Second edition). Monographs on Statistics and Applied Probability 37. Chapman & Hall/CRC, London. 511 pp.CrossRefGoogle Scholar
MEDINA, E. 1974. Dark CO2 fixation, habitat preference and evolution within the Bromeliaceae. Evolution 28:677686.Google Scholar
MITCHELL, A. W., SECOY, K. & JACKSON, T. 2002 (eds.). The global canopy handbook – techniques of access and study in the forest roof. Global Canopy Programme, Oxford.Google Scholar
MURCIA, C. 1995. Edge effects in fragmented forests: implications for conservation. Trends in Ecology and Evolution 10:5862.CrossRefGoogle ScholarPubMed
PITTENDRIGH, C. S. 1948. The bromeliad–Anopheles–malaria complex in Trinidad. I. The bromeliad flora. Evolution 2:9981003.Google ScholarPubMed
SÁNCHEZ-AZOFEIFA, G. A., HARRIS, R. C. & SKOLE, D. L. 2001. Deforestation in Costa Rica: a quantitative analysis using remote sensing imagery. Biotropica 33:378384.CrossRefGoogle Scholar
SAUNDERS, D. A., HOBBS, R. J. & MARGULES, C. R. 1991. Biological consequences of ecosystem fragmentation: a review. Conservation Biology 5:1832.CrossRefGoogle Scholar
SCHELHAS, J. & GREENBERG, R. 1996. Forest patches in tropical landscapes. Island Press, Washington. 426 pp.Google Scholar
SMITH, L. B. & DOWNS, R. J. 1977. Tillandsioideae (Bromeliaceae). Flora Neotropica Monograph 14 (part 2). Hafner Press, New York. 1492 pp.Google Scholar
SOLIS-MONTERO, L., FLORES-PALACIOS, A. & CRUZ-ANGÓN, A. 2005. Shade-coffee plantations as refuges for tropical wild orchids in Central Veracruz, Mexico. Conservation Biology 19: 908916.CrossRefGoogle Scholar
STOKES, M. E., DAVIS, C. S. & KOCH, G. G. 2000. Categorical data analysis using the SAS system. (Second edition). SAS Institute Inc., Carey. 626 pp.Google Scholar
TOLEDO-ACEVES, T. & WOLF, J. H. D. 2008. Germination and establishment of Tillandsia eizii (Bromeliaceae) in the canopy of an oak forest in Chiapas, Mexico. Biotropica 40:246250.CrossRefGoogle Scholar
TURNBULL, L. A., CRAWLEY, M. J. & REES, M. 2000. Are plant populations seed-limited? A review of seed sowing experiments. Oikos 88:225238.CrossRefGoogle Scholar
VAN DUNNÉ, H. J. F. 2001. Establishment and development of epiphytes in secondary neotropical forests. PhD thesis, Universiteit van Amsterdam.Google Scholar
WINKLER, M., HÜLBER, K., MEHLTRETER, K., GARCÍA-FRANCO, J. & HIETZ, P. 2005a. Herbivory in epiphytic bromeliads, orchids and ferns in a Mexican montane forest.Journal of Tropical Ecology 21;147154.CrossRefGoogle Scholar
WINKLER, M., HÜLBER, K. & HIETZ, P. 2005b. Effect of canopy position on germination and seedling survival of epiphytic bromeliads in a Mexican humid montane forest. Annals of Botany 95:10391047.Google Scholar
WOLF, J. H. D. 1994. Factors controlling the distribution of vascular and non-vascular epiphytes in the northern Andes. Vegetatio 112:1528.Google Scholar
WOLF, J. H. D. 2005. The response of epiphytes to anthropogenic disturbance of pine-oak forests in the highlands of Chiapas, Mexico. Forest Ecology and Management 212:376393.Google Scholar
YEATON, R. L. & GLADSTONE, D. E. 1982. The pattern of colonization of epiphytes on Calabash trees (Crescentia alata HBK) in Guanacaste Province, Costa Rica. Biotropica 11:137140.CrossRefGoogle Scholar