Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T16:48:23.807Z Has data issue: false hasContentIssue false

A comparative study of the effects of fluctuations in temperature and moisture supply on hard coat dormancy in seeds of coastal tropical legumes in Mexico

Published online by Cambridge University Press:  10 July 2009

Patricia Moreno-Casasola
Affiliation:
Institute of Ecological Botany, University of Uppsala, Box 559, S 751 22 Uppsala, Sweden.
John Philip Grime
Affiliation:
Natural Environmental Research Council, Unit of Comparative Plant Ecology, Department of Botany, The University, Sheffield S10 2TN, UK.
M. Luisa Martínez
Affiliation:
Laboratorio de Ecología, Facultad de Ciencias, UNAM, Mexico, D.F. 04510, México.

Abstract

The effect of fluctuations in temperature and moisture supply on hard seeds of nine tropical coastal sand dune legumes, including herbs (Schrankia atiadrivalvis, Macropiilium atropurpureum and Canavalia rosea), and shrubs (Acacia farncsiana, A. macracantha, Mimosa chaetocarpa, Indigoftra sujjruticosa, Crolalaria incana and Chamaecrista chamaecrutoides), has been studied under laboratory and field conditions. Using a fluctuating temperature gradient bar seeds buried in sand were exposed to various amplitudes of diurnal temperature fluctuation over an extended period of time and seed germinability was examined at intervals. Germination percentage increased considerably in most species as a consequence of treatment with marked effects occurring at temperature fluctuations greater than 20°C and becoming detectable after 45 days. In several species the effect of applying wetting and drying cycles was to lower the amplitude of temperature fluctuation necessary to soften the seeds. Species can be grouped into physiological groups on the basis of differences in seed response to temperature fluctuations. It is suggested that these differences may help to explain the mechanisms distinguishing the different colonization patterns observed in tropical sand dune systems.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

Angevine, M. W. & Chabot, M. F. 1979. Seed germination syndromes in higher plants. Pp. 188206 in Solbrig, V. T., Jain, S., Johnson, G. B. & Raven, P. H. (eds). Topics in plant population biology. Columbia University Press, New York.Google Scholar
Ballard, L. A. T. 1973. Physical barriers to germination. Seed Science and Technology 1:285303.Google Scholar
Barton, L. V. 1965. Seed dormancy: general survey. Pp. 699720 in Ruhland, W. (ed.). Encyclopedia of Plant Physiology. Springer Verlag, Berlin. Vol. 15/2.Google Scholar
Bewley, -J. D. & Black, M. 1982. Physiology and biochemistry of seeds in relation to germination. Vol. 2. Viability, dormancy and environmental control. Springer-Verlag, Berlin. 375 pp.Google Scholar
Cavanagh, A. K. 1980. A review of some aspects of the germination of Acacias. Proceedings of the Royal Society Victoria 91:161180.Google Scholar
Christiansen, M. M. & Moore, R. P. 1959. Seed coat structural differences that influence water uptake and seed quality in hard seed cotton. Agronomy Journal 51:582584.CrossRefGoogle Scholar
García, E. 1981. Modifications al sistema de clasificación climática de Koeppen. Inst. de Geografia, UNAM, Mexico. 252 pp.Google Scholar
Grime, J. P. 1981. The role of seed dormancy in vegetation dynamics. Annals of Applied Biology 98:555558.CrossRefGoogle Scholar
Grime, J. P., Mason, G., Curtis, A. V., Rodman, J., Band, S. R., Mowforth, M. A. G., Neal, A. M. & Shaw, S. 1981. A comparative study of germination characteristics in a local flora. Journal of Ecology 69:10171059.CrossRefGoogle Scholar
Grime, J. P. & Thompson, K. 1976. An apparatus for measurement of the effect of amplitude of temperature fluctuation upon the germination of seeds. Annals of Botany 40:795799.CrossRefGoogle Scholar
Roller, D. & Cohen, D. 1959. Germination-regulating mechanisms in some desert seeds. VI. Convolvulus lanatus Vahl., Convolvulus negevensis Zoh. and Convolvulus secundus Desr. Bulletin Research Council of Israel Sect. D., Bot. 7:175180.Google Scholar
Moreno-Casasola, P. 1982. Ecología de la vegetación de dunas costeras: factores fisicos. Biolica 7(4):577602.Google Scholar
Moreno-Casasola, P., Van Der Maarel, E., Castillo, S., Huesca, M. L. & Pisanty, I. 1982. Ecologia de la vegetación de dunas costeras: estructura y compositión en el Morro de la Mancha, Ver. I. Biotica 7:491526.Google Scholar
Portlock, C. C., Shea, S. R., Majer, J. D. & Bell, D. T. 1990. Stimulation of germination of Acacia pulchella: laboratory basis for forest management options. Journal of Applied Ecology 27:31324.CrossRefGoogle Scholar
Quinlivan, B. J. 1961. The effect of constant and fluctuating temperatures on the permeability of the hard seeds of some legume species. Australian Journal of Agriculture Research 12:10091022.CrossRefGoogle Scholar
Quinlivan, B. J. 1965. The influence of the growing season and the following dry season on the hardseededness of subterranean clover in different environments. Australian Journal of Agriculture Research 16:277291.CrossRefGoogle Scholar
Quinlivan, B. J. 1966. The relationship between temperature fluctuations and the softening of hard seeds of some legume species. Australian Journal of Agriculture Research 17:625631.CrossRefGoogle Scholar
Quinlivan, B. J. 1968. The softening of hard seeds of sand-plain lupin (Lupinus varius L.). Australian Journal of Agriculture Research 19:507515.CrossRefGoogle Scholar
Quinlivan, B. J. & Millington, A. J. 1962. The effect of a mediterranean summer environment on the permeability of hard seeds of subterranean clover. Australian Journal of Agriculture Research 13:377387.CrossRefGoogle Scholar
Rathcke, B. & Lacey, E. 1985. Phenological patterns of terrestrial plants. Annual Review of Ecology and Systematics 16:179214.CrossRefGoogle Scholar
Rolston, M. P. 1978. Water impermeable seed dormancy. Botanical Review 44:365398.CrossRefGoogle Scholar
Sabiiti, E. N. & Wein, R. W. 1987. Fire and Acacia seeds: a hypothesis of colonization success. Journal of Ecology 74:937946.CrossRefGoogle Scholar
Stone, E. C. & Juhren, G. 1951. The effect of fire on the germination of the seed of Rhus ovata Wats. American Journal of Botany 38:368372.CrossRefGoogle Scholar
Thompson, K., Grime, J. P. & Mason, G. 1977. Seed germination in response to diurnal fluctuation of temperature. Nature 267:147149.CrossRefGoogle Scholar
Thompson, K. & Grime, J. P. 1983. A comparative study of germination responses to diumally-fluctuating temperatures. Journal of Applied Ecology 20:141149.CrossRefGoogle Scholar
Washitani, I. 1988. Effects of high temperatures on the permeability and germinability of the hard seeds of Rhus javanica L. Annals of Botany 62:1316.CrossRefGoogle Scholar
Werker, E. 1980/1981. Review: Seed dormancy as explained by the anatomy of embryo envelopes. Israel Journal of Botany 29:2244.Google Scholar
Williams, W. A. & Elliot, J. R. 1960. Ecological significance of seed coat impermeability to moisture in crimson, subterranean and rose clovers in a mediterranean-type climate. Ecology 41:733742.CrossRefGoogle Scholar
Zar, J. H. 1974. Biostatistical analysis. Prentice-Hall International, USA. 620 pp.Google Scholar