Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-10T04:13:16.803Z Has data issue: false hasContentIssue false

Zooplankton summer composition in the southern Gulf of Mexico with emphasis on salp and hyperiid amphipod assemblages

Published online by Cambridge University Press:  28 August 2020

Clara M. Hereu
Affiliation:
Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), km 107 Carretera Tijuana-Ensenada. Apdo. Postal 360, C.P. 22860, Ensenada, Baja California, México
Maria Clara Arteaga
Affiliation:
Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), km 107 Carretera Tijuana-Ensenada. Apdo. Postal 360, C.P. 22860, Ensenada, Baja California, México
Clara E. Galindo-Sánchez
Affiliation:
Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), km 107 Carretera Tijuana-Ensenada. Apdo. Postal 360, C.P. 22860, Ensenada, Baja California, México
Sharon Z. Herzka
Affiliation:
Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), km 107 Carretera Tijuana-Ensenada. Apdo. Postal 360, C.P. 22860, Ensenada, Baja California, México
Paola G. Batta-Lona
Affiliation:
Marine Science Department, University of Connecticut, 1080 Shemecossett Rd, Groton CT, 06340
Sylvia P. A. Jiménez-Rosenberg*
Affiliation:
Instituto Politécnico Nacional-CICIMAR, Av. IPN s/n, La Paz, Baja California Sur, C.P. 23096, Mexico
*
Author for correspondence: Patricia A. Jimenez-Rossenberg, E-mail: srosenbe@ipn.mx

Abstract

Mesoscale features within the Gulf of Mexico (GOM) are known to influence zooplankton dynamics. Here we describe the composition of the zooplankton assemblage off shelf during summer in relation to environmental conditions, with emphasis on hyperiid amphipods and salps. Zooplankton samples were collected in summer of 2015 and 2016 in the central and southern GOM and in the Yucatan Channel in 2015. Two anticyclonic gyres were present in the north and less intense coupled cyclonic-anticyclonic gyres in the south. Zooplankton abundances differed temporally and spatially. Copepods were the dominant group (>55% of total abundance), while several less abundant taxa contributed to inter-annual and spatial differences. Amphipods and salps comprised <3% and their abundances were positively correlated. Fifty-six hyperiid and 10 salp species were identified. The dominant amphipod species were: Lestrigonus bengalensis (summer 2015), Anchylomera blossevillei and Primno spp. juveniles (summer 2016). Dominant salp species were Ihlea punctata, Iasis cylindrica and Thalia spp. Lower salp and amphipod species richness and abundance were associated with anticyclonic structures. Spatial and temporal differences were partly associated with symbiotic relationships between the groups. This study supports previous evidence of high spatial and temporal variability in zooplankton abundance in off-shelf waters of the GOM.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Álvarez-Cadena, JN, Ordóñez-López, U, Almaral-Mendivil, AR and Uicab-Sabido, A (2009) Composition and abundance of zooplankton groups from a coral reef lagoon in Puerto Morelos, Quintana Roo, Mexico, during an annual cycle. Revista de Biologia Tropical 57, 647658.Google ScholarPubMed
Ambriz-Arreola, I, Gómez-Gutiérrez, J, del Franco-Gordo, MC, Plascencia-Palomera, V, Gasca, R, Kozak, ER and Lavaniegos, BE (2018) Seasonal succession of tropical community structure, abundance, and biomass of five zooplankton taxa in the central Mexican Pacific. Continental Shelf Research 168, 5467.Google Scholar
Andersen, V (1998) Salp and pyrosomid blooms and their importance in biogeochemical cycles. In Bone, Q (ed.), The Biology of Pelagic Tunicates. Oxford: Oxford University Press, pp. 125138.Google Scholar
Biggs, DC (1992) Nutrients, plankton, and productivity in a warm-core ring in the western Gulf of Mexico. Journal of Geophysical Research 97, 2143.CrossRefGoogle Scholar
Biggs, DC and Ressler, PH (2001) Distribution and abundance of phytoplankton, zooplankton, icthyoplankton, and micronekton in the deepwater Gulf of Mexico. Gulf of Mexico Science 2001, 729.Google Scholar
Biggs, DC and Muller-Karger, FE (1994) Ship and satellite observations of chlorophyll stocks in interacting cyclone-anticyclone eddy pairs in the western Gulf of Mexico. Journal of Geophysical Research 99, 73717384.CrossRefGoogle Scholar
Biggs, DC, Zimmerman, RA, Gasca, R, Suárez-Morales, E, Castellanos-Osorio, I and Leben, RR (1997) Note on plankton and cold-core rings in the Gulf of Mexico. Fishery Bulletin 95, 369375.Google Scholar
Borcard, D, Gillet, F and Legendre, P (2018) Numerical Ecology with R. Springer, 2nd Edn.Cham: Springer International Publishing.CrossRefGoogle Scholar
Bowman, TE (1978) Revision of the Pelagic Amphipod Genus Primno (Hyperiidea: Phrosinidae). Smithsonian Contribution to Zoology 275, 123.CrossRefGoogle Scholar
Burridge, AK, Tump, M, Vonk, R, Goetze, E and Peijnenburg, KTCA (2017) Diversity and distribution of hyperiid amphipods along a latitudinal transect in the Atlantic Ocean. Progress in Oceanography 158, 224235.Google Scholar
Callejas-Jimenez, M, Santamaría-Del-Ángel, E, Gonzalez-Silvera, A, Millan-Nuñez, R and Cajal-Medrano, R (2012) Dynamic regionalization of the Gulf of Mexico based on normalized radiances (nLw) derived from MODIS-Aqua. Continental Shelf Research 37, 814.Google Scholar
Carrillo, L, Johns, EM, Smith, RH, Lamkin, JT and Largier, JL (2016) Pathways and hydrography in the Mesoamerican Barrier Reef System. Part 2: water masses and thermohaline structure. Continental Shelf Research 120, 4158.CrossRefGoogle Scholar
Castellanos-Osorio, I and Gasca, R (1999) Epipelagic euphausiids (Euphauseacea) and spring mesoscale features in the Gulf of Mexico. Crustaceana 72, 391404.CrossRefGoogle Scholar
Damien, P, Pasqueron de Fommervault, O, Sheinbaum, J, Jouanno, J, Camacho-Ibar, VF and Duteil, O (2018) Partitioning of the open waters of the Gulf of Mexico based on the seasonal and interannual variability of chlorophyll concentration. Journal of Geophysical Research: Oceans 123, 25922614.Google Scholar
Daponte, MC, Calcagno, JA, Acevedo-Luque, MJJ, Martos, P, Machinandiarena, L and Esnal, GB (2011) Composition, density, and biomass of Salpidae and Chaetognatha in the Southwestern Atlantic Ocean (34.5°S–39°S). Bulletin of Marine Science 87, 25.CrossRefGoogle Scholar
Daudén-Bengoa, G, Jiménez-Rosenberg, SPA, Compaire, JC, del Pilar Echeverri-García, L, Pérez-Brunius, P and Herzka, SZ (2020) Larval fish assemblages of myctophids in the deep water region of the southern Gulf of Mexico linked to oceanographic conditions. Deep Sea Research Part I: Oceanographic Research Papers 155, 103181.CrossRefGoogle Scholar
de la Luz Espinosa-Fuentes, M, Flores-Coto, C, Sanvicente-Añorve, L and Zavala-García, F (2009) Vertical distribution of zooplankton biomass and ichthyoplankton density during an annual cycle on the continental shelf of the southern Gulf of Mexico. Revista de Biología Marina y Oceanografía 44, 477488.Google Scholar
de Lima, MCG and Valentin, JL (2001) New records of Amphipoda Hyperiidea in associations with gelatinous zooplankton. Hydrobiologia 448, 229235.Google Scholar
Deibel, D and Paffenhöfer, GA (2009) Predictability of patches of neritic salps and doliolids (Tunicata. Thaliacea). Journal of Plankton Research 31, 15711579.CrossRefGoogle Scholar
Dominguez-Guadarrama, A and Pérez-Brunius, P (2017) CIGoM altimetry derived products from AVISO Ssalto/DUACS L4, V10, Grid Series.Google Scholar
Eden, BR, Steinberg, DK, Goldthwait, SA and McGillicuddy, DJ Jr. (2009) Zooplankton community structure in a cyclonic and mode-water eddy in the Sargasso Sea. Deep Sea Research Part I: Oceanographic Research Papers 56, 17571776.Google Scholar
Elliott, DT, Pierson, JJ and Roman, MR (2012) Relationship between environmental conditions and zooplankton community structure during summer hypoxia in the northern Gulf of Mexico. Journal of Plankton Research 34, 602613.Google Scholar
Esnal, GB (1979) Los Salpidos (Tunicata, Thaliacea) del Golfo de México y Mar Caribe. Physis Buenos Aires, Sección A 38, 5966.Google Scholar
Esnal, GB and Daponte, MC (1999) Salpidae. In Boltovskoy, D (ed.), South Atlantic Zooplankton. Leiden: Backhuys, pp. 14231444.Google Scholar
Färber Lorda, J, Athié, G, Camacho Ibar, V, Daessle, LW and Molina, O (2019) The relationship between zooplankton distribution and hydrography in oceanic waters of the Southern Gulf of Mexico. Journal of Marine Systems 192, 2841.Google Scholar
Flores-Coto, C, Sanvicente-Añorve, L, Vázquez-Gutiérrez, F and Sánchez-Ramírez, M (2010) Mesoscale distribution of Oikopleura and Fritillaria (Appendicularia) in the Southern Gulf of Mexico: spatial segregation. Revista de Biologia Marina y Oceanografia 45, 379388.Google Scholar
Fratantoni, PS, Lee, TN, Podesta, GP and Müller-Karger, FE (1998) The influence of Loop Current perturbations on the formation and evolution of Tortugas eddies in the southern Straits of Florida. Journal of Geophysical Research: Oceans 103, 2475924779.CrossRefGoogle Scholar
Gasca, R (1999) Siphonophores (Cnidaria) and summer mesoscale features in the Gulf of Mexico. Bulletin of Marine Science 65, 7589.Google Scholar
Gasca, R (2003 a) Hyperiid amphipods (Crustacea: Peracarida) and spring mesoscale features in the Gulf of Mexico. Marine Ecology 24, 303317.CrossRefGoogle Scholar
Gasca, R (2003 b) Hyperiid amphipods (Crustacea: Peracarida) in relation to a cold-core ring in the Gulf of Mexico. Hydrobiologia 510, 115124.Google Scholar
Gasca, R (2004) Distribution and abundance of hyperiid amphipods in relation to summer mesoscale features in the southern Gulf of Mexico. Journal of Plankton Research 26, 9931003.Google Scholar
Gasca, R (2007) Hyperiid amhipods of the Sargasso Sea. Bulletin of Marine Science 81, 115125.Google Scholar
Gasca, R (2009) Diversity of hyperiid amphipods (Crustacea: Peracarida) in the western Caribbean Sea: news from the deep. Zoological Studies 48, 6370.Google Scholar
Gasca, R and Suárez, E (1991) Siphonophores of upwelling areas of the Campeche Bank and the Mexican Caribbean Sea. Hydrobiologia 216/217, 497502.CrossRefGoogle Scholar
Gasca, R, Castellanos-Osorio, I and Biggs, DC (2001) Euphausiids (Crustacea, Euphausiacea) and summer mesoscale features in the Gulf of Mexico. Bulletin of Marine Science 68, 397408.Google Scholar
Gasca, R, Suárez-Morales, E and Haddock, SHD (2007) Symbiotic associations between crustaceans and gelatinous zooplankton in deep and surface waters off California. Marine Biology 151, 233242.CrossRefGoogle Scholar
Gasca, R, Manzanilla, H and Suárez-Morales, E (2009) Distribution of hyperiid amphipods (Crustacea) of the southern Gulf of Mexico, summer and winter, 1991. Journal of Plankton Research 31, 14931504.CrossRefGoogle Scholar
Gómez, FA, Lee, S-K, Hernández, FJ, Chiaverano, LM, Müller-Karger, FE, Liu, Y and Lamkin, JT (2019) ENSO-induced co-variability of salinity, plankton biomass and coastal currents in the Northern Gulf of Mexico. Scientific Reports 9, 178.Google ScholarPubMed
Harbison, GR and Madin, LP (1976) Description of the female Lycaea nasuta Claus, 1879 with an illustrated key to the species of Lycaea Dana, 1852 (Amphipoda, Hyperiidea). Bulletin of Marine Science 26, 165171.Google Scholar
Harbison, GR, Biggs, DC and Madin, LP (1977) The associations of Amphipoda Hyperiidea with gelatinous zooplankton – II. Associations with Cnidaria, Ctenophora and Radiolaria. Deep Sea Research 24, 465472.CrossRefGoogle Scholar
Hereu, CM and Suárez-Morales, E (2012) Checklist of the salps (Tunicata, Thaliacea) from the Western Caribbean Sea with a key for their identification and comments on other North Atlantic salps. Zootaxa 3210, 5060.CrossRefGoogle Scholar
Hereu, CM, Lavaniegos, BE and Goericke, R (2010) Grazing impact of salp (Tunicata, Thaliacea) assemblages in the eastern tropical North Pacific. Journal of Plankton Research 32, 785804.CrossRefGoogle Scholar
Herzka, SZ, Herguera, JC, Licea, A, Sheinbaum, J, Ferreira, V, Camacho, V, Díaz, V, Farber, J, García, J, Ayón, MH, Huerta, , Lara-Lara, JR, Lares, L, Lizárraga, L, Macías, V, Millán, E, Riquelme, M and Rocha, A (2014) Fase III para el establecimiento de la línea base en aguas profundas del Golfo de México en respuesta al derrame petrolero asociado a la plataforma Deepwater Horizon Informe final. xxxxxxhttps://www.gob.mx/inecc/documentos/aguas-profundas-xiximi-3Google Scholar
Hopkins, TL (1982) The vertical distribution of zooplankton in the eastern Gulf of Mexico. Deep Sea Research Part A. Oceanographic Research Papers 29, 10691083.CrossRefGoogle Scholar
Kara, AB, Rochford, PA and Hurlburt, HE (2000) An optimal definition for ocean mixed layer depth. Security 105(16), 803816, 821.Google Scholar
Landry, MR, Decima, M, Simmons, MP, Hannides, CCS and Daniels, E (2008) Mesozooplankton biomass and grazing responses to Cyclone Opal, a subtropical mesoscale eddy. Deep Sea Research Part II: Topical Studies in Oceanography 55, 13781388.CrossRefGoogle Scholar
Laval, P (1980) Hyperiid amphipods as crustacean parasitoids associated with gelatinous zooplankton. Oceanography and Marine Biology Annual Review 18, 1156.Google Scholar
Lavaniegos, BE and Hereu, CM (2009) Seasonal variation in hyperiid amphipod abundance and diversity and influence of mesoscale structures off Baja California. Marine Ecology Progress Series 394, 137152.CrossRefGoogle Scholar
Lavaniegos, BE and Ohman, MD (1999) Hyperiid amphipods as indicators of climate change in the California Current. In Schram, FR and von V. Klein, JC (eds), Proceedings of the Fourth International Crustacean Congress, Amsterdam, The Netherlands, 20–24 July 1998. Crustaceans and the Biodiversity Crisis – Volume I. Leiden: Brill, pp. 489509.Google Scholar
LeCroy, SE, Gasca, R, Winfield, I, Ortíz, M and Escobar-Briones, E (2009) Amphipoda (Crustacea) of the Gulf of Mexico. In Tunnell, JW, Felder, DL and Earle, SA (eds), Gulf of Mexico: Origin, Waters, and Biota. Vol. 1, Biodiversity. College Station, TX: Texas A&M University Press, pp. 941972.Google Scholar
Linacre, LP, Lara-Lara, JR, Camacho-Ibar, V, Herguera, JC, Bazán-Guzmán, C and Ferreira-Bartrina, V (2015) Distribution pattern of picoplankton carbon biomass linked to mesoscale dynamics in the southern Gulf of Mexico during winter conditions. Deep Sea Research Part I: Oceanographic Research Papers 106, 5567.CrossRefGoogle Scholar
Madin, LP and Deibel, D (1998) Feeding and energetics of Thaliaceans. In Bone, Q (ed.), The Biology of Pelagic Tunicates. Oxford: Oxford University Press, pp. 81103.Google Scholar
Madin, LP and Harbison, GR (1977) The associations of Amphipoda Hyperiidea with gelatinous zooplankton – I. Associations with Salpidae. Deep Sea Research 24, 449456.CrossRefGoogle Scholar
Maechler, M, Rousseeuw, P, Struyf, A, Hubert, M and Hornik, K (2017) cluster: Cluster Analysis Basics and Extensions. R package version 2.0.6.Google Scholar
Martell-Hernández, LF, Sánchez-Ramírez, M and Ocaña-Luna, A (2014) Distribution of planktonic cnidarian assemblages in the southern Gulf of Mexico, during autumn. Revista Chilena de Historia Natural 87, 18.Google Scholar
Martínez-López, B and Zavala-Hidalgo, J (2009) Seasonal and interannual variability of cross-shelf transports of chlorophyll in the Gulf of Mexico. Journal of Marine Systems 77, 120.CrossRefGoogle Scholar
Müller-Karger, FE, Walsh, JJ, Evans, RH and Meyers, MB (1991) On the seasonal phytoplankton concentration and sea surface temperature cycles of the Gulf of Mexico as determined by satellites. Journal of Geophysical Research 96, 12645.CrossRefGoogle Scholar
Müller-Karger, FE, Smith, JP, Werner, S, Chen, R, Roffer, M, Liu, Y, Muhling, B, Lindo-Atichati, D, Lamkin, JT, Cerdeira-Estrada, S and Enfield, DB (2015) Natural variability of surface oceanographic conditions in the offshore Gulf of Mexico. Progress in Oceanography 134, 5476.CrossRefGoogle Scholar
Okolodkov, YB (2003) A review of Russian plankton research in the Gulf of Mexico and the Caribbean Sea in the 1960–1980s. Hidrobiológica 13, 207221.Google Scholar
Oksanen, J, Blanchet, FG, Friendly, M, Kindt, R, Legendre, P, McGlinn, D, Minchin, PR, O'Hara, RB, Simpson, GL, Solymos, P, Stevens, MHH, Szoecs, E and Wagner, H (2018) vegan: Community Ecology Package. R Package Version 2.5-1.Google Scholar
Ortner, PB, Hill, LC and Cummings, SR (1989) Zooplankton community structure and copepod species composition in the northern Gulf of Mexico. Continental Shelf Research 9, 387402.CrossRefGoogle Scholar
Pakhomov, EA, Dubischar, CD, Hunt, BPV, Strass, V, Cisewski, B, Siegel, V, von Harbou, L, Gurney, L, Kitchener, J and Bathmann, U (2011) Biology and life cycles of pelagic tunicates in the Lazarev Sea, Southern Ocean. Deep Sea Research Part II: Topical Studies in Oceanography 58, 16771689.CrossRefGoogle Scholar
Pasqueron De Fommervault, O, Pérez-Brunius, P, Damien, P, Camacho-Ibar, VF and Sheinbaum, J (2017) Temporal variability of chlorophyll distribution in the Gulf of Mexico: bio-optical data from profiling floats. Biogeosciences (Online) 14, 56475662.CrossRefGoogle Scholar
Pérez-Brunius, P, García-Carrillo, P, Dubranna, J, Sheinbaum, J and Candela, J (2013) Direct observations of the upper layer circulation in the southern Gulf of Mexico. Deep-Sea Research Part II: Topical Studies in Oceanography 85, 182194.CrossRefGoogle Scholar
Rowe, GT (2017) Offshore plankton and benthos of the Gulf of Mexico. In Ward, CH (ed.), Habitats and Biota of the Gulf of Mexico: Before the Deepwater Horizon Oil Spill. New York, NY: Springer, pp. 641767.CrossRefGoogle Scholar
Salas-de-León, DA, Monreal-Gómez, MA, Signoret, M and Aldeco, J (2004) Anticyclonic-cyclonic eddies and their impact on near-surface chlorophyll stocks and oxygen supersaturation over the Campeche Canyon, Gulf of Mexico. Journal of Geophysical Research C: Oceans 109, 110.Google Scholar
Sanvicente-Añorve, L, Alba, C, Flores-Coto, C and Castillo-Rivera, M (2009) Siphonophores off a riverine system in the southern Gulf of Mexico: factors affecting their distribution and spatial niche breadth and overlap. Aquatic Ecology 43, 423435.CrossRefGoogle Scholar
Sanvicente-Añorve, L, Lemus-Santana, E, Flores-Coto, C and Alatorre-Mendieta, M (2013) Vertical segregation of holoplanktonic molluscs in the epipelagic layer, southern Gulf of Mexico. Helgoland Marine Research 67, 397405.Google Scholar
Schabetsberger, R, Morgan, CA, Brodeur, RD, Potts, CL, Peterson, WT and Emmett, RL (2003) Prey selectivity and diel feeding chronology of juvenile chinook (Onorhynchus tshawytscha) and coho (O. kisutch) salmon in the Columbia River plume. Fisheries Oceanography 12, 523540.CrossRefGoogle Scholar
Schlitzer, R (2018) Ocean Data View. Available at https://odv.awi.de.Google Scholar
Stuck, KC, Perry, HM and Fish, AG (1980) New records of Hyperiidea (Crustacea, Amphipoda) from the North Central Gulf of Mexico. Gulf Research Reports 6, 359370.CrossRefGoogle Scholar
Sturges, W and Lugo-Fernandez, A (eds) (2005) Circulation in the Gulf of Mexico: Observations and Models, vol. 161. Washington, DC: American Geophysical Union.Google Scholar
Suárez-Morales, E and Arriaga, ER (1998) Zooplancton e hidrodinámica en las zonas litorales y arrecifales de Quintana Roo. México. Hidrobiológica 8, 1932.Google Scholar
Suarez-Morales, E, Gasca, R, Segura-Puertas, L and Biggs, DC (2002) Planktonic cnidarians in a cold-core ring in the Gulf of Mexico. Anales Del Instituto de Biología 73, 1936.Google Scholar
Suárez-Morales, E, Fleeger, JW and Montagna, PA (2009) Free-living Copepoda (Crustacea) of the Gulf of Mexico. In Tunnell, JW, Felder, DL and Earle, SA (eds), Gulf of Mexico: Origin, Waters, and Biota. Vol. 1, Biodiversity. College Station, TX: Texas A&M University Press, pp. 841869.Google Scholar
Tenreiro, M, Candela, J, Sanz, EP, Sheinbaum, J and Ochoa, J (2018) Near-surface and deep circulation coupling in the Western Gulf of Mexico. Journal of Physical Oceanography 48, 145161.CrossRefGoogle Scholar
Valencia, B and Giraldo, A (2012) Structure of hyperiid amphipod assemblages on Isla Gorgona, eastern tropical Pacific off Colombia. Journal of the Marine Biological Association of the United Kingdom 92, 14891499.CrossRefGoogle Scholar
Vinogradov, ME, Volkov, AF, Semenova, TN and Causey, D (1996) Hyperiid Amphipods (Amphipoda, Hyperiidea) of the World Oceans. Washington, DC: Smithsonian Institution Libraries.Google Scholar
Wells, RJD, Rooker, JR, Quigg, A and Wissel, B (2017) Influence of mesoscale oceanographic features on pelagic food webs in the Gulf of Mexico. Marine Biology 164, 92.CrossRefGoogle Scholar
Wormuth, JH, Ressler, PH, Cady, RB and Harris, EJ (2000) Zooplankton and micronekton in cyclones and anticyclones in the Northeast Gulf of Mexico. Gulf of Mexico Science 18, 2334.CrossRefGoogle Scholar
Zavala-García, F, Flores-Coto, C and de la Luz Espinosa-Fuentes, M (2016) Relationship between zooplankton biomass and continental water discharges in the southern Gulf of Mexico (1984–2001). Revista de Biología Marina y Oceanografía 51, 2131.CrossRefGoogle Scholar
Zeidler, W (2016) A review of the families and genera of the superfamily PLATYSCELOIDEA Bowman & Gruner, 1973 (Crustacea: Amphipoda: Hyperiidea), together with keys to the families, genera and species. Zootaxa 4192, 1136.CrossRefGoogle Scholar
Supplementary material: File

Hereu et al. supplementary material

Hereu et al. supplementary material

Download Hereu et al. supplementary material(File)
File 5.7 MB