Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T02:00:26.033Z Has data issue: false hasContentIssue false

Vertical distribution of mesozooplankton and ichthyoplankton communities in the South-western Atlantic Ocean (23°14′1″S 40°42′19″W)

Published online by Cambridge University Press:  09 January 2018

Ana C. T. Bonecker*
Affiliation:
Universidade Federal do Rio de Janeiro, Instituto de Biologia, Departamento de Zoologia, Av. Carlos Chagas Filho, 373 – Prédio do CCS, Bloco A, Sala A0-084, Ilha do Fundão – 21.941-902, Rio de Janeiro, RJ, Brasil
Cristina De O. Dias
Affiliation:
Universidade Federal do Rio de Janeiro, Instituto de Biologia, Departamento de Zoologia, Av. Carlos Chagas Filho, 373 – Prédio do CCS, Bloco A, Sala A0-084, Ilha do Fundão – 21.941-902, Rio de Janeiro, RJ, Brasil
Marcia S. De Castro
Affiliation:
Universidade Federal do Rio de Janeiro, Instituto de Biologia, Departamento de Zoologia, Av. Carlos Chagas Filho, 373 – Prédio do CCS, Bloco A, Sala A0-084, Ilha do Fundão – 21.941-902, Rio de Janeiro, RJ, Brasil
Pedro F. De Carvalho
Affiliation:
Universidade Federal do Rio de Janeiro, Instituto de Biologia, Departamento de Zoologia, Av. Carlos Chagas Filho, 373 – Prédio do CCS, Bloco A, Sala A0-084, Ilha do Fundão – 21.941-902, Rio de Janeiro, RJ, Brasil
Adriana V. Araujo
Affiliation:
Universidade Federal do Rio de Janeiro, Instituto de Biologia, Departamento de Zoologia, Av. Carlos Chagas Filho, 373 – Prédio do CCS, Bloco A, Sala A0-084, Ilha do Fundão – 21.941-902, Rio de Janeiro, RJ, Brasil
Rodolfo Paranhos
Affiliation:
Universidade Federal do Rio de Janeiro, Laboratório de Hidrobiologia, Departamento de Biologia Marinha, Instituto de Biologia, Av. Carlos Chagas Filho, 373 – Prédio do CCS, Bloco A, Cidade Universitária, Ilha do Fundão – 21.941-902, Rio de Janeiro, Brasil
Anderson S. Cabral
Affiliation:
Universidade Federal do Rio de Janeiro, Laboratório de Hidrobiologia, Departamento de Biologia Marinha, Instituto de Biologia, Av. Carlos Chagas Filho, 373 – Prédio do CCS, Bloco A, Cidade Universitária, Ilha do Fundão – 21.941-902, Rio de Janeiro, Brasil
Sergio L. C. Bonecker
Affiliation:
Universidade Federal do Rio de Janeiro, Instituto de Biologia, Departamento de Zoologia, Av. Carlos Chagas Filho, 373 – Prédio do CCS, Bloco A, Sala A0-084, Ilha do Fundão – 21.941-902, Rio de Janeiro, RJ, Brasil
*
Correspondence should be addressed to: A. C. T. Bonecker Universidade Federal do Rio de Janeiro, Instituto de Biologia, Departamento de Zoologia, Av. Carlos Chagas Filho, 373 – Prédio do CCS, Bloco A, Sala A0-084, Ilha do Fundão – 21.941-902, Rio de Janeiro, RJ, Brasil email: ana@biologia.ufrj.br

Abstract

A study was conducted over eight consecutive days in February 2010 in which daily variations in the vertical distributions of heterotrophic bacteria, mesozooplankton and ichthyoplankton at 1–1200 m in the South-western Atlantic Ocean were investigated. Diurnal and nocturnal samples were collected at an oceanographic station at four regional depths: Tropical Water (TW) (1 m), South Atlantic Central Water (SACW) (250 m), Antarctic Intermediate Water (AAIW) (800 m) and Upper Circumpolar Deep Water (UCDW) (1200 m). Bacterial, mesozooplankton and larval fish densities significantly differed between sample depths but not between sampling tow times. In total, 154 zooplankton species and 18 larval fish species were identified. The highest number of taxa was obtained from the night-time TW trawls. This depth zone had the highest densities of mesozooplankton, larval fish and bacterioplankton (auto and heterotrophic), associated with the highest temperature and salinity and the lowest inorganic nutrient concentrations. Two sample groups were identified based on their mesozooplankton and larval fish compositions: night-time TW and other water masses (daytime TW, SACW, AAIW and UCDW). Thirty-two indicator species were detected in night-time TW. The copepod Nullosetigera impar was, to the best of our knowledge, identified for the first time on the Brazilian coast. Our results showed significant variability in the abundance and vertical distribution of mesozooplankton, bacterioplankton and larval fish along the water column in an oceanic area. We have provided new data and insights on the composition and vertical distribution of mesozooplankton, larval fish and bacterioplankton in deep waters in the South-western Atlantic Ocean.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alves, N. Jr., Meirelles, P.M., de Oliveira, S.E., Dutilh, B., Silva, G.G., Paranhos, R., Cabral, A.S., Rezende, C., Lida, T., de Moura, R.L., Kruger, R.H., Pereira, R.C., Valle, R., Sawabe, T., Thompson, C. and Thompson, F. (2014) Microbial community diversity and physical–chemical features of the Southwestern Atlantic Ocean. Archives of Microbiology 197, 165179.Google Scholar
Andrade, L., Gonzalez, A.M., Araujo, F.V. and Paranhos, R. (2003) Flow cytometry assessment of bacterioplankton in tropical marine environments. Journal of Microbiological Methods 19, 8994.Google Scholar
Angel, M.V. (2003) The pelagic environment of the open ocean. In Tyler, P.A. (ed.) Ecosystems of the deep oceans, vol. 28. Amsterdam: Elsevier, pp. 3979.Google Scholar
Ariza, A., Garijo, J.C., Landeira, J.M., Bordes, F. and Hernández-León, S. (2015) Migrant biomass and respiratory carbon flux by zooplankton and micronekton in the subtropical northeast Atlantic Ocean (Canary Islands). Progress in Oceanography 134, 330342. doi: 10.1016/j.pocean.2015.03.003.Google Scholar
Berasategui, A.D., Menu Marque, S., Gomez-Erache, M., Ramírez, F.C., Mianzan, H.W. and Acha, E.M. (2006) Copepod assemblages in a highly complex hydrographic region. Estuarine, Coastal and Shelf Science 66, 483492.Google Scholar
Björnberg, T.K.S. (1981) Copepoda. In Boltovskoy, D. (ed.) Atlas del Zooplancton del Atlantico Sudoccidental y métodos de trabajo com el zooplancton marino. Mar del Plata: INIDEP, pp. 587679.Google Scholar
Boebel, O., Schmid, C. and Zenk, W. (1997) Flow and recirculation of Antarctic Intermediate Water across the Rio Grande Rise. Journal of Geophysical Research 102, 2096720986.Google Scholar
Boltovskoy, D. (1999) South Atlantic zooplankton. Leiden: Backhuys Publishers, 1706 pp.Google Scholar
Bonecker, A.C.T. and Castro, M.S. (eds) (2006) Atlas de larvas de peixes da região central da Zona Econômica Exclusiva brasileira. Museu Nacional Série Livros n. 19. Rio de Janeiro, Brasil. 216 pp.Google Scholar
Bonecker, A.C.T., Katsuragaewa, M., Castro, M.S., Gomes, E.P., Namiki, C.A.P. and Zani-Teixeira, M. L. (2012) Larval fish of the Campos Basin, southeastern Brazil. Check List 8, 12801291.Google Scholar
Bonecker, A.C.T., Namiki, C.A.P., Castro, M.S. and Campos, P.N. (2014 a) Catálogo dos estágios iniciais de desenvolvimento dos peixes da bacia de Campos [online]. Curitiba: Sociedade Brasileira de Zoologia, 295 pp. Zoologia: guias e manuais de identificação series. ISBN 978-85-98203-10-2. Available from SciELO Books. <http://books.scielo.org>..>Google Scholar
Bonecker, S.L.C. (ed.) (2006) Atlas de zooplâncton da região central da Zona Econômica Exclusiva brasileira. Museu Nacional Série livros n. 21. Rio de Janeiro, Brasil. 232 pp.Google Scholar
Bonecker, S.L.C., Araujo, A.V., Carvalho, P.F., Dias, C.O., Loureiro Fernandes, L.F., Migotto, A.E. and Oliveira, O.M.P. (2014 b) Horizontal and vertical distribution of mesoplankton species richness and composition down to 2300 m in the southwest Atlantic Ocean. Zoologia 31, 445462.Google Scholar
Brugnano, C., Granata, A., Guglielmo, L. and Zagami, G. (2012) Spring diel vertical distribution of copepod abundances and diversity in the open Central Tyrrhenian Sea (Western Mediterranean). Journal of Marine Systems 105–108, 207220.Google Scholar
Buitenhuis, E.T., Li, W.K.W., Vaulot, D., Lomas, M.W., Landry, M.R., Partensky, F., Karl, D.M., Ulloa, O., Campbell, L., Jacquet, S., Lantoine, F., Chavez, F., Macias, D., Gosselin, M. and McManus, G.B. (2012) Picoplankton biomass distribution in the global ocean. Earth System Science Data 4, 3746.Google Scholar
Campos, E.J.D., Gonçalves, J.E. and Ikeda, Y. (1995) Water mass characteristics and geostrophic circulation in the South Brazil Bight: summer of 1991. Journal of Geophysical Research 100, 1853718550.Google Scholar
Campos, E.J.D., Ikeda, Y., Castro, B.M., Gaeta, S.A., Lorenzzetti, J.A. and Stevenson, M.R. (1996) Experiment studies circulation in the Western South Atlantic. Eos Transactions American Geophysical Union 77, 253259.Google Scholar
Castro, M.S., Richards, W.J. and Bonecker, A.C.T. (2010) Occurrence and distribution of larval lantern fish (Myctophidae) from the southwest Atlantic Ocean. Zoologia 27, 541553.Google Scholar
Cavalcanti, E.A.H. and Larrazábal, M.E.L. (2004) Macrozooplâncton da Zona Econômica Exclusiva do Nordeste do Brasil (segunda expedição oceanográfica – REVIZEE/NE II) com ênfase em Copepoda (Crustacea). Zoologia 21, 467475.Google Scholar
Cavalcanti, E.A.H., Neumann-Leitão, S. and do Vieira, D.A.N. (2008) Mesozooplâncton do sistema estuarino de Barra das Jangadas, Pernambuco, Brasil. Revista Brasileira de Zoologia 25, 436444.Google Scholar
Cha, S.S., McGowan, M.F. and Richards, W.J. (1994) Vertical distribution of fish larvae off the Florida Keys, 26 May–5 June 1989. Bulletin of Marine Science 54, 828842.Google Scholar
Clarke, K.R. and Warwick, R.M. (1994) Change in marine communities: an approach to statistical analysis and interpretation. Plymouth: N.E.R.C.Google Scholar
Conley, W.J. and Hopkins, T.L. (2004) Feeding ecology of lanternfish (Pisces: Myctophidae) larvae: prey preferences as a reflection of morphology. Bulletin of Marine Science 75, 361379.Google Scholar
Deevey, G.B. and Brooks, A.L. (1977) Copepods of the Sargasso Sea off Bermuda: species composition, and vertical and seasonal distribution between the surface and 2000 m. Bulletin of Marine Science 22, 256291.Google Scholar
de Lira, S.M.A., de Teixeira, I.A., de Lima, C.D.M., de Santos, G.S., Neumann-Leitão, S. and Schwamborn, R. (2014) Spatial and nycthemeral distribution of the zooneuston off Fernando de Noronha, Brazil. Brazilian Journal of Oceanography 62, 3545.Google Scholar
Dias, C.O., Araujo, A.V., Paranhos, R. and Bonecker, S.L.C. (2010) Vertical copepod assemblages (0–2300 m) off Southern Brazil. Zoological Studies 49, 230242.Google Scholar
Dias, C.O., Araujo, A.V., Vianna, S.C., Loureiro Fernandes, L.F., Paranhos, R., Suzuki, M.S. and Bonecker, S.L.C. (2015) Spatial and temporal changes in biomass, production and assemblage structure of mesozooplanktonic copepods in the tropical south-west Atlantic Ocean. Journal of the Marine Biological Association of the United Kingdom 95, 483496.Google Scholar
Dufrêne, M. and Legendre, P. (1997) Species assemblages and indicator species: the need for flexible asymmetrical approach. Ecological Monographs 67, 345366.Google Scholar
Escribano, E., Hidalgo, P. and Krautz, C. (2009) Zooplankton associated with the oxygen minimum zone system in the northern upwelling region of Chile during March 2000. Deep-Sea Research Part II 56, 10831094.Google Scholar
Fernández-Álamo, M.A. and Färber-Lorda, J. (2006) Zooplankton and the oceanography of the eastern tropical Pacific: a review. Progress in Oceanography 69, 318359.Google Scholar
Frost, B. and Bollens, S. (1992) Variability of diel vertical migration in the marine planktonic copepod Pseudocalanus newmani in relation to its predators. Canadian Journal of Fisheries and Aquatic Sciences 49, 11371141.Google Scholar
Gabioux, M. (2008) Estudo numérico dos meandros e vórtices da Corrente do Brasil entre 22°S E 30°S. PhD thesis. Rio de Janeiro: Universidade Federal do Rio de Janeiro, COPPE/UFRJ, 158 unpublished.Google Scholar
Garland, E.D., Zimmer, C.A. and Lentz, S.J. (2002) Larval distributions in inner-shelf waters: the roles of wind-driven cross-shelf currents and diel vertical migrations. Limnology and Oceanography 47, 803817.Google Scholar
Gasol, J.M. and del Giorgio, P.A. (2000) Using flow cytometry for counting natural planktonic bacteria and understanding the structure of planktonic bacterial communities. Scientia Marina 64, 197224.Google Scholar
Gluchowska, M., Trudnowska, E., Goszczko, I., Kubiszyn, A.M., Blachowiak-Samolyk, K., Walczowski, W. and Kwasniewski, S. (2017) Variations in the structural and functional diversity of zooplankton over vertical and horizontal environmental gradients en route to the Arctic Ocean through the Fram Strait. PLoS ONE 12, e0171715.Google Scholar
Gonzalez-Silvera, A., Santamaria-del-Angel, E., Garcia, V.M.T., Garcia, C.A.E., Millán-Nuñez, R. and Muller-Karger, F. (2004) Biogeographical regions of the tropical and subtropical Atlantic Ocean off South America: classification based on pigment (CZCS) and chlorophyll-a (SeaWiFS) variability. Continental Shelf Research 24, 9831000.Google Scholar
Grasshoff, K., Ehrhardt, M. and Kremling, K. (1999) Methods of seawater analysis. Weinhein: Wiley-Verlag Chemie, 217 pp.Google Scholar
Harris, B.P., Young, J.W., Revill, A.T. and Taylor, M.D. (2014) Understanding diel-vertical feeding migrations in zooplankton using bulk carbon and nitrogen stable isotopes. Journal of Plankton Research 36, 11591163.Google Scholar
Hays, G. (2003) A review of the adaptive significance and ecosystem consequences of zooplankton diel vertical migrations. Hydrobiologia 503, 163170.Google Scholar
Hays, G.C., Harris, R.P. and Head, R.N. (2001) Diel changes in the near-surface biomass of zooplankton and the carbon content of vertical migrants. Deep-Sea Research II 48, 10631068.Google Scholar
Herndl, G.J., Reinthaler, T., Teira, E., van Aken, H., Veth, C., Pernthaler, A. and Pernthaler, J. (2005) Contribution of Archaea to total prokaryotic production in the deep Atlantic Ocean. Applied and Environmental Microbiology 71, 23032309.Google Scholar
Hill, A.E. (1998) Horizontal zooplankton dispersal by diel vertical migration in S2 tidal currents on the northwest European continental shelf. Continental Shelf Research 14, 491506.Google Scholar
Hirota, Y., Nemoto, T. and Marumo, R. (1984) Vertical distribution of larvae of Euphausia nana and E. similes (Crustacea: Euphausiacea) in Sagami Bay and Suruga Bay, central Japan. Marine Biology 81, 131137.Google Scholar
Irigoien, X., Conway, D.V.P. and Harris, R.P. (2004) Flexible diel vertical migration behaviour of zooplankton in the Irish Sea. Marine Ecology Progress Series 267, 8597.Google Scholar
Isla, A., Scharek, R. and Latasa, M. (2015) Zooplankton diel vertical migration and contribution to deep active carbon flux in the NW Mediterranean. Journal of Marine Systems 143, 8697.Google Scholar
Jackson, D.A. (1993) Stopping rules in principal components analysis – a comparison of heuristic and statistical approaches. Ecology 74, 22042214.Google Scholar
Jung-Hoon, K., Minho, S., Youn, K. and Woong-Seo, K. (2013) Diel vertical migration of the copepod Calanus sinicus before and during formation of the Yellow Sea Cold Bottom Water in the Yellow Sea. Acta Oceanologica Sinica 32, 99106.Google Scholar
Jürgens, K. and Güde, H. (1994) The potential importance of grazing-resistant bacteria in planktonic systems: a review. Marine Ecology Progress Series 112, 169188.Google Scholar
Karner, M.B., DeLong, E.F. and Karl, D.M. (2001) Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409, 507510.Google Scholar
Koppelmann, R., Timm, H.T. and Weikert, H. (2005) Bacterial and zooplankton distribution in deep waters of the Arabian Sea. Deep-Sea Research Part I 52, 21822192.Google Scholar
Krause, M. and Radach, G. (1989) On the relations of vertical distribution, diurnal migration and nutritional state of herbivorous zooplankton in the Northern North Sea during FLEX 1976. International Review of Hydrobiology 74, 371417.Google Scholar
Lebaron, P., Servais, P., Agogué, H., Courties, C. and Joux, F. (2001) Does the high nucleic acid content of individual bacterial cells allow us to discriminate between active cells and inactive cells in aquatic systems? Applied and Environmental Microbiology 67, 17751782.Google Scholar
Lie, A.A.Y., Tse, P. and Wong, C.K. (2012) Diel vertical migration and feeding of three species of chaetognaths (Flaccisagitta enflata, Aidanosagitta delicata and Aidanosagitta neglecta) in two shallow, subtropical bays in Hong Kong. Journal of Plankton Research 34, 670684.Google Scholar
Lopes, R.M., Katsuragawa, M., Dias, J.F., Montú, M.A., Muelbert, J.H., Gorri, C. and Brandini, F.P. (2006) Zooplankton and ichthyoplankton distribution on the southern Brazilian shelf: an overview. Scientia Marina 70, 189202.Google Scholar
de Macedo-Soares, L.C.P., Garcia, C.A.E., Freire, A.S. and Muelbert, J.H. (2014) Large-scale ichthyoplankton and water mass distribution along the South Brazil shelf. PLoS ONE 9: e91241.Google Scholar
Madin, L.P., Kremer, P. and Hacker, S. (1996) Distribution and vertical migration of salps (Tunicata, Thaliacea) near Bermuda. Journal of Plankton Research 18, 747755.Google Scholar
Makabe, R., Tanimura, A. and Fukuchi, M. (2012) Comparison of mesh size effects on mesozooplankton collection efficiency in the Southern Ocean. Journal of Plankton Research 34, 432436.Google Scholar
Mauchline, J. (1980) The biology of mysids and euphausiids. Advances in Marine Biology 18, 1681.Google Scholar
Maycas, E.R., Bourdillon, A.H., Macquart-Moulin, C., Passelaigue, F. and Patriti, G. (1999) Diel variations of the bathymetric distribution of zooplankton groups and biomass in Cap-Ferret Canyon, France. Deep-Sea Research Part II 46, 20812099.Google Scholar
Mayzaud, P. and Pakhomov, E.A. (2014) The role of zooplankton communities in carbon recycling in the ocean: the case of the Southern Ocean. Journal of Plankton Research 36, 15431556.Google Scholar
McCune, B. and Mefford, M.J. (1999) PC-ORD. Multivariate analysis of ecological data. Version 4.0. Gleneden Beach, OR: MjM Software.Google Scholar
McEwen, G.F., Johnson, M.W. and Folsom, T.R. (1954) A statistical analysis of the performance of the Folsom plankton sample splitter, based upon test observations. Theoretical and Applied Climatology 7, 502527.Google Scholar
McGeoch, M.A., Rensburg, B.J.V. and Botes, A. (2002) The verification and application of bioindicators: a case study of dung beetles in a savanna ecosystem. Journal of Applied Ecology 39, 661672.Google Scholar
Mémery, L., Arhan, M., Alvarez-Salgado, X.A., Messias, M.J., Mercier, H., Castro, C.G. and Rios, A.F. (2000) The water masses along the western boundary of the south and equatorial Atlantic. Progress in Oceanography 47, 6998.Google Scholar
Miyashita, L.K., Gaeta, S.A. and Lopes, R.M. (2011) Life cycle and reproductive traits of marine podonids (Cladocera, Onychopoda) in a coastal subtropical area. Journal of Plankton Research 33, 779792.Google Scholar
Müller, T.J., Ikeda, Y., Zangenberg, N. and Nonato, L.V. (1998) Direct measurements of Western Boundary Currents off Brazil between 20°S and 28°S. Journal of Geophysical Research 103, 54295437.Google Scholar
Munk, P., Nielsen, T.G. and Hansen, B.W. (2015) Horizontal and vertical dynamics of zooplankton and larval fish communities during mid-summer in Disko Bay, West Greenland. Journal of Plankton Research 37, 554570.Google Scholar
Nafpaktitis, B.G., Backus, R.H., Craddock, J.E., Haedrich, R.L., Robinson, B.H. and Karnella, C. (1977) Family Myctophidae. Part 7 of the Monograph Series. In Gibbs, R.H. Jr. (ed.) Fishes of the Western North Atlantic. New Haven, CT: Yale University, pp. 13299.Google Scholar
Nagata, T., Fukuda, H., Fukuda, R. and Koike, I. (2000) Bacterioplankton distribution and production in deep Pacific waters: large-scale geographic variations and possible coupling with sinking particles fluxes. Limnology and Oceanography 45, 426435.Google Scholar
Niencheski, L.F., Baumgarten, M.G.Z., Roso, R.H. and Bastos, L.A.P. (1999) Oceanografia química – levantamento bibliográfico e identificação do estado atual do conhecimento. Rio de Janeiro: MMA, CIRM, FEMAR.Google Scholar
Nogueira, M. Jr., Brandini, F.P. and Codina, J.C.U. (2015) Diel vertical dynamics of gelatinous zooplankton (Cnidaria, Ctenophora and Thaliacea) in a subtropical stratified ecosystem (South Brazilian Bight). PLoS ONE 10: e0144161.Google Scholar
Ohman, M.D. and Romagnan, J.B. (2016) Nonlinear effects of body size and optical attenuation on diel vertical migration by zooplankton. Limnology and Oceanography 61, 765770.Google Scholar
Olivar, M.P. and Sabatés, A. (1997) Vertical distribution of fish larvae in the north-west Mediterranean Sea in spring. Marine Biology 129, 289300.Google Scholar
Palomares-Garcia, R.J., Gómez-Gutiérrez, J. and Robinson, C.J. (2013) Winter and summer vertical distribution of epipelagic copepods in the Gulf of California. Journal of Plankton Research 35, 10091026.Google Scholar
Pearre, S. Jr. (2003) Eat and run? The hunger/satiation hypothesis in vertical migration: history, evidence and consequences. Biological Reviews 78, 179.Google Scholar
Peterson, R.G. and Stramma, L. (1991) Upper-level circulation in the South Atlantic Ocean. Progress in Oceanography 26, 173.Google Scholar
Pierrot-Bults, A.C. and Nair, V.R. (1991) Distribution patterns in chaetognaths. In Bone, Q., Kapp, H. and Pierrot-Bults, A.C. (eds) The biology of Chaetognaths. Oxford: Oxford University Press, pp. 86117.Google Scholar
Razouls, C., De Bovée, F., Kouwenberg, J. and Desreumaux, N. (2005–2017) Diversity and geographic distribution of marine planktonic copepods. http://copepodes.obs-banyuls.fr/en (accessed 7 June 2016).Google Scholar
R Development Core Team (2010) R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. ISBN 3-900051-07-0. http://www.r-project.org (accessed 7 June 2016).Google Scholar
Resgalla, C. Jr., Carvalho, J.L., Pereira, F.J., Rörig, L.R., Rodrigues-Ribeiro, M., Tamanaha, M.S. and Proença, L.A.O. (2004) Migração vertical e taxas fisiológicas de Thalia democratica (Salpidae: Thaliacea) na Reserva Marinha do Arvoredo, Santa Catarina. Notas técnicas Facimar 8, 4554.Google Scholar
Rezende, C.E., Andrade, L., Suzuki, M.S., Faro, B.C.M.T., Gonzales, A.S.M. and Paranhos, R. (2007) Hidroquímica. In Valentin, J.L. (ed.) Características hidrobiológicas da região central da Zona Exclusiva brasileira (Salvador, BA ao Cabo de São Tomé, RJ). Brasília: Série Documentos REVIZEE-SCORE CENTRAL, pp. 3160.Google Scholar
Richards, W.J. (2006) Early stages of Atlantic fishes: an identification guide for the Western North Atlantic. Volume I. and Volume II. Boca Raton, FL: CRC Press, 2640 pp.Google Scholar
Rodrigues, S.V., Marinho, M.M., Jonck, C.C.C., Gonçalves, E.S., Brant, V.F., Paranhos, R., Curbelo, M.P. and Falcão, A.P. (2014) Phytoplankton community structures in shelf and oceanic waters off southeast Brazil (20°–25°S), as determined by pigment signatures. Deep-Sea Research Part I 88, 4762.Google Scholar
Rodriguez, J.M., Cabrero, A., Gago, J., Guevara-Fletcher, C., Herrero, M., Hernandez de Rojas, A., Garcia, A., Laiz-Carrion, R., Vergara, A.R., Alvarez, P., Piñero, C. and Saborido-Rey, F. (2015) Vertical distribution and migration of fish larvae in the NW Iberian upwelling system during the winter mixing period: implications for cross-shelf distribution. Fisheries Oceanography 24, 274290.Google Scholar
Roe, H.S.J. (1974) Observations on the diurnal vertical migrations of an oceanic animal community. Marine Biology 28, 99113.Google Scholar
Sahara, R., Fukaya, K., Okuda, T., Hori, M., Yamamoto, T., Nakaoka, M. and Noda, T. (2015) Larval dispersal dampens population fluctuation and shapes the interspecific spatial distribution patterns of rocky intertidal gastropods. Ecography 38, 19.Google Scholar
Sameoto, D., Guglielmo, L. and Lewis, M.K. (1987) Day/night vertical distribution of euphausiids in the eastern tropical Pacific. Marine Biology 96, 235245.Google Scholar
Sameoto, D., Wiebe, P., Runge, J., Postel, L., Dunn, J., Miller, C. and Coombs, S.H. (2000) Collecting zooplankton. In Harris, R., Wiebe, P.H., Lenz, J., Skjoldal, H.R. and Huntley, M. (eds) ICES zooplankton methodology manual. pp. 5581.Google Scholar
Santos, A.P. and Figueiredo, J.L. (2008) Guia de identificação dos peixes da família myctophidae do brasil. São Paulo: Editora da Universidade de São Paulo, 168 pp.Google Scholar
Silveira, I.C.A. (2007) O Sistema Corrente do Brasil na Bacia de Campos, RJ. PhD thesis. São Paulo: Universidade de São Paulo, USP, 181 pp. unpublished.Google Scholar
Siokou, I., Zervoudaki, S. and Christou, E.D. (2013) Mesozooplankton community distribution down to 1000 m along a gradient of oligotrophy in the Eastern Mediterranean Sea (Aegean Sea). Journal of Plankton Research 35, 13131330.Google Scholar
Sogawa, S., Sugisaki, H., Saito, H., Okazaki, Y., Ono, T., Shimode, S. and Kikuchi, T. (2016) Seasonal and regional change in vertical distribution and diel vertical migration of four euphausiid species (Euphausia pacifica, Thysanoessa inspinata, T. longipes, and Tessarabrachion oculatum) in the northwestern Pacific. Deep-Sea Research Part I 109, 19.Google Scholar
Steinberg, D.K. and Landry, M.R. (2017) Zooplankton and the ocean carbon cycle. Annual Review of Marine Science 9, 413444.Google Scholar
Sutton, T.T., Wiebe, P.H., Madin, L. and Bucklin, A. (2010) Diversity and community structure of pelagic fishes to 5000 m depth in the Sargasso Sea. Deep-Sea Research Part II 57, 22202233.Google Scholar
Suzuki, M.S., Rezende, C.E., Paranhos, R. and Falcão, A.P. (2015) Spatial distribution (vertical and horizontal) and partitioning of dissolved and particulate nutrients (C, N and P) in the Campos Basin, Southern Brazil. Estuarine, Coastal and Shelf Science 166, 412.Google Scholar
Tanaka, T. and Rassoulzadegan, F. (2002) Full-depth profile (0–2000 m) of bacteria, heterotrophic nanoflagellates and ciliates in the NW Mediterranean Sea: vertical partitioning of microbial trophic structures. Deep-Sea Research Part II 49, 20932107.Google Scholar
Thurman, H.V. and Burton, E.A. (2001) Introductory oceanography. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
Tiberti, R. and Iacobuzio, R. (2013) Does fish predation influence the vertical distribution of zooplankton in high transparency lakes? Hydrobiologia 709, 2739.Google Scholar
Turner, J.T. (2004) The importance of small planktonic copepods and their roles in pelagic marine food webs. Zoological Studies 43, 255266.Google Scholar
Van Rensburg, B., McGeoch, M.A., Chown, S.L. and Jaarsveld, A.S. (1999) Conservation of heterogeneity among dung beetles in the Maputaland Centre of Endemism. Biological Conservation 88, 145153.Google Scholar
Vila-Costa, M., Gasol, J.M., Sharma, S. and Moran, M.A. (2012) Community analysis of high- and low-nucleic acid-containing bacteria in NW Mediterranean coastal waters using 16S rDNA pyrosequencing. Environmental Microbiology 14, 13901402.Google Scholar
Williamson, C.E., Fischer, J.M., Bollens, S.M., Overholt, E.P. and Breckenridge, J.K. (2011) Toward a more comprehensive theory of zooplankton diel vertical migration: integrating ultraviolet radiation and water transparency into the biotic paradigm. Limnology and Oceanography 56, 16031623.Google Scholar
Yamaguchi, A., Watanabe, Y., Ishida, H., Harimoto, T., Furusawa, K., Suzuki, S., Ishizaka, J., Ikeda, T. and Takahashi, M.M. (2002) Community and trophic structures of pelagic copepods down to greater depths in the western subarctic Pacific (West-Cosmic). Deep-Sea Research Part I 49, 10071025.Google Scholar
Zubkov, M.V., Fuchs, B.M., Burkill, P.H. and Amann, R.I. (2001) Comparison of cellular and biomass specific activities of dominant bacterioplankton groups in stratified waters of the Celtic Sea. Applied and Environmental Microbiology 67, 52105218.Google Scholar
Zubkov, M.V., Sleigh, M.A. and Burkill, P.H. (2000 a) Assaying picoplankton distribution by flow cytometry of underway samples collected along a meridional transect across the Atlantic Ocean. Aquatic Microbial Ecology 21, 1320.Google Scholar
Zubkov, M.V., Sleigh, M.A., Burkill, P.H. and Leakey, R.J.G. (2000 b). Picoplankton community structure on the Atlantic Meridional Transect: a comparison between seasons. Progress in Oceanography 45, 369386.Google Scholar
Zubkov, M.V., Sleigh, M.A., Tarran, G.A., Burkill, P.H. and Leakey, R.J.G. (1998) Picoplanktonic community structure on a Atlantic transect from 50° N to 50° S. Deep-Sea Research Part I 45, 13391355.Google Scholar