Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T21:57:52.559Z Has data issue: false hasContentIssue false

Population dynamics, allometric relationships and reproductive status of Microcosmus sabatieri (Tunicata: Ascidiacea) in the Aegean Sea

Published online by Cambridge University Press:  25 July 2008

Dimitris Vafidis*
Affiliation:
University of Thessaly, School of Agricultural Sciences, Department of Ichthyology and Aquatic Environment, Nea Ionia, Magnesia, Greece
Chryssanthi Antoniadou
Affiliation:
Aristotle University, School of Biology, Department of Zoology, Thessaloniki, Greece
Chariton Chintiroglou
Affiliation:
Aristotle University, School of Biology, Department of Zoology, Thessaloniki, Greece
*
Correspondence should be addressed to: Dimitris VafidisUniversity of Thessaly School of Agricultural SciencesDepartment of Ichthyology and Aquatic Environment Nea Ionia, Magnesia, Greece email: dvafidis@uth.gr

Abstract

The Mediterranean ascidian Microcosmus sabatieri is among the conspicuous benthic invertebrates, forming dense populations on moderately inclined cliffs. It is an edible species, commercially harvested at the southern part of the Aegean Sea. Considering that the biology of this species has not been adequately studied, a three-year survey was carried out focusing on population structure, allometric relationships and reproductive status of M. sabatieri stocks in Astypalea Island (Dodecanese, south Aegean). Population density showed insignificant temporal variation and lower values at the steeper station, while the pattern of dispersion was random. All measured biometric characters showed high plasticity, especially those related to siphons. All the examined morphometric relationships follow negative allometry. Ascidian length was a good predictor of biomass, and a strong relation was observed between mantle and tunic characters. Gonad somatic index showed a single spawning season per year, in winter. Length–frequency distribution analysis revealed the presence of one mode of medium sized individuals, implying that M. sabatieri stocks are under moderate fishing pressure in the study area.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Antoniadou, C., Chintiroglou, C., Voultsiadou, E. and Vafidis, D. (2004) First assessment of the natural stock of Microcosmus sabatieri in South Aegean (Greece). Rapport de la Commission International pour l'Exploration de la Mer Méditerranée 37, 477–477.Google Scholar
Antoniadou, C., Voultsiadou, E. and Chintiroglou, C. (2006) Sublittoral megabenthos along cliffs of different profile (Aegean Sea, Eastern Mediterranean). Belgian Journal of Zoology 136, 6979.Google Scholar
Battacharya, G.K. (1967) A simple method of resolution of a distribution into Gaussian components. Biometrics 23, 115135.CrossRefGoogle Scholar
Becerro, M.A. and Turon, X. (1992) Reproductive cycles of the ascidians Microcosmus sabatieri and Halocynthia papillosa in the northwestern Mediterannean. PSZN: Marine Ecology 13, 363373.Google Scholar
Cancela da Fonsesca, J.P. (1965) L'outil statistique en biologie du sol. I. Distributions de fréquences et tests de signification. Revue Ecologie et Biologie du Sol 3, 299332.Google Scholar
Chintiroglou, C., Antoniadou, C., Vafidis, D. and Koutsoubas, D. (2005) A review on the biodiversity of hard substrate invertebrate communities in the Aegean Sea. Mediterranean Marine Science 6, 5162.CrossRefGoogle Scholar
Coma, R. and Ribes, M. (2003) Seasonal energetic constraints in Mediterranean benthic suspension feeders: effects at different levels of ecological organization. Oikos 101, 205215.CrossRefGoogle Scholar
Elliot, J.M. (1971) Some methods for the statistical analysis of samples of benthic invertebrates. Ambleside, Westmorland: Freshwater Biological Association Science Publications.Google Scholar
Fiala-Medioni, A. (1974) Ethologie alimentaire d'invertébrés benthiques filtreurs (ascidies). II. Variations des taux de filtration et de digestion en fonction de l'espèce. Marine Biology 28, 199206.CrossRefGoogle Scholar
Gaspar, M., Santos, M., Vasconcelos, P. and Monteiro, C. (2002) Shell morphometric relationships of the most common bivalve species (Mollusca: Bivalvia) of the Algarve coast (southern Portugal). Hydrobiologia 477, 7380.CrossRefGoogle Scholar
Gayanilo, F.C.J. and Pauly, D. (1997) The FAO-ICLARM Stock Assessment Tools (FiSAT) Reference Manual. FAO Computerized Information Series (Fisheries). No. 8. Rome.Google Scholar
Kontoyanis, H., Krestenitis, Y., Petihakis, G. and Tsirtsis, G. (2005) Coastal areas: circulation and hydrological features. In Pathanasiou, E. and Zenetos, A. (eds) State of the Hellenic marine environment. Athens: Hellenic Center for Marine Research Publications, pp. 95103.Google Scholar
Koukouras, A., Voultsiadou-Koukoura, E., Kevrekidis, T. and Vafidis, D. (1995) Ascidian fauna of the Aegean Sea with a checklist of the eastern Mediterranean and Black Sea species. Annales de l'Institut Océanographie Paris 71, 1934.Google Scholar
Lambert, G. (2005) Ecology and natural history of the protochordates. Canadian Journal of Zoology 83, 3450.CrossRefGoogle Scholar
Monniot, C. (1962) Les Microcosmus des côtes de France. Vie et Milieu 12, 397432.Google Scholar
Monniot, C. (1965) Etude faunistique et évolutive de la famille des Pyuridae (Ascidiacea). Mémoires du Musée Nationale de l’Histoire Naturelle 36, 1204.Google Scholar
Monniot, C. and Monniot, F. (1987) Ascidies (Ciones at Violet). In Fischer, W., Scneider, M. and Bouchon, M.L. (eds) Méditerranée et Mer Noire. Zone de pêche 37. Révision 1. Fiches FAO d'identification des espèces pour les besoins de la pêche. Rome: FAO, pp. 743760.Google Scholar
Monniot, C., Monniot, F. and Laboute, P. (1991) Coral reef ascidians of New Caledonia. Paris: ORSTOM.Google Scholar
Panagiotou, M., Antoniadou, C., Krestenitis, Y. and Chintiroglou, C. (2007) Stock assessment of the dominant ascidians: Microcosmus savignyi, Styela plicata and Phallusia mammillata in Thessaloniki Bay (Thermaikos Gulf). Fresenius Environmental Bulletin 16, 10121019.Google Scholar
Panagiotou, M., Antoniadou, C. and Chintiroglou, C. (2008) Population dynamics and reproductive status of Microcosmus savignyi Monniot, 1962 (Thermaikos Gulf, Eastern Mediterranean): a preliminary assessment. Journal of Natural History 42, 545558.CrossRefGoogle Scholar
Pérès, J.M. and Picard, J. (1958) Manuel de bionomie benthique de la mer Méditerranée. Recueille des Travaux du Station Marine Endoume 14, 5122.Google Scholar
Svane, I. and Lundälv, T. (1981) Reproductive patterns and population dynamics of Ascidia mentula O.F. Müller on the Swedish west coast. Journal of Experimental Marine Biology and Ecology 50, 163182.CrossRefGoogle Scholar
Tarjuelo, I. and Turon, X. (2004) Resource allocation in ascidians: reproductive investment vs. other life history traits. Invertebrate Biology 123, 168180.CrossRefGoogle Scholar
Thiel, M. (1999) Host use and population demographics of the ascidian-dwelling amphipod Leucothoe spinicarpa: indication for extended parental care and advanced social behaviour. Journal of Natural History 33, 193206.CrossRefGoogle Scholar
Thiyagarajan, V. and Qian, P.Y. (2003) Effect of temperature, salinity and delayed attachment on development of the solitary ascidian Styela plicata (Lesueur). Journal of Experimental Marine Biology and Ecology 290, 133146.CrossRefGoogle Scholar
Tsangridis, A., Sanchez, A.P. and Ioannidou, D. (2001) Exploitation patterns of Octopus vulgaris in two Mediterranean areas. Scientia Marina 66, 5968.CrossRefGoogle Scholar
Turon, X., Becerro, M.A., Uriz, M.J. and Llopis, J. (1996) Small-scale association measures in epibenthic communities as a clue for allelochemical interactions. Oecologia 108, 351360.CrossRefGoogle ScholarPubMed
Underwood, A.J. (1997) Experiments in ecology. Their logical design and interpretation using analysis of variance. Cambridge: Cambridge University Press.Google Scholar
Vacelet, J. (1991) Statut des éponges commerciales en Méditerranée. In Boudouresque, C.F., Avon, M. and Graver, V. (eds) Les espèces marines a protéger en Méditerranée. Marseille: GIS Posidonie Publications, pp. 3542.Google Scholar
Vafidis, D., Antoniadou, C., Kapetanios, N., Gkafas, G. and Exadactylos, A. (2007) Stock assessment and genetic diversity of the edible ascidian Microcosmus sabatieri Roule, 1885 in the South Aegean Sea. Rapport de la Commission International pour l'Exploration de la Mer Méditerranée 38, 630–630.Google Scholar
Voultsiadou, E. (2005) Demosponge distribution in the eastern Mediterranean: a NW–SE gradient. Helgoland Marine Research 59, 237251.CrossRefGoogle Scholar
Voultsiadou, E., Pyrounaki, M.M. and Chintiroglou, C. (2007) The habitat engineering tunicate Microcosmus sabatieri Roule, 1885 and its associate peracarid epifauna. Estuarine, Coastal and Shelf Science 74, 197204.CrossRefGoogle Scholar
Voultsiadou, E., Vafidis, D. and Antoniadou, C. (in press) Sponges of economical interest in the Eastern Mediterranean: an assessment of diversity and population density. Journal of Natural History.Google Scholar
Zar, J.H. 1984. Biostatistical analysis. New Jersey: Prentice-Hall Inc.Google Scholar