Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T08:43:10.737Z Has data issue: false hasContentIssue false

The Phosphate Content of Fresh and Salt Waters in its Relationship to the growth of the Algal Plankton

Published online by Cambridge University Press:  11 May 2009

W. R. G. Atkins
Affiliation:
Head of the Department of General Physiology at the Plymouth Laboratory.

Extract

On account of the minute quantities in which they are present and of the fact that they are considered of secondary importance as indicating sewage contamination, phosphates are not usually estimated in analyses of natural waters. The tediousness of the determination also militated against it in the past. As a result, of the numerous analyses recorded by Clarke (1920), but few mention phosphates. C. H. Stone's analysis of the Mississippi in 1905, carried out upon a sample above Carrolton, Louisiana, shows 0.27 per cent of phosphate (PO4) with a total salinity of 146 parts per million, or 0.39 mgrm. PO4 per litre, corresponding to 0.29 mgrm. P2O5.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1923

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, E. J. 1919. A contribution to the quantitative study of plankton. Journ. Mar. Biol. Assocn., 12, 18.CrossRefGoogle Scholar
Allen, E. J., and Nelson, E. W. 1907. On the artificial culture of marine plankton organisms. Journ. Mar. Biol. Assocn., 8, 421474, and Q. J. Microscop. Sci., 1910, 55, 361–431. American public health association. 1920. Standard methods for the examination of water and sewage. Boston.CrossRefGoogle Scholar
Atkins, W. E. G. 1922. The hydrogen ion concentration of sea water in its biological relations. Journ. Mar. Biol. Assocn., 12, 717771.CrossRefGoogle Scholar
Atwater, W. O. 1888. The chemical composition and nutritive values of food fishes and aquatic invertebrates. Rep. of Commissioners of Fish and Fisheries, U.S.A.Google Scholar
Brandt, K. 1920. Über den Stoffwechsel im Meere. 3 Abhandlung. Wiss. Meeresuntersuch. Abt. Kiel, 18, 185430.Google Scholar
Clarke, F. W. 1920. The data of geochemistry. U.S. Geol. Survey, Bull. 695. Washington.Google Scholar
Clarke, F. W., and Salkover, B. 1918. Inorganic constituents of two small crustaceans. Proc. Washington Acad., 8, 185.Google Scholar
Clarke, F. W., and Wheeler, W. C. 1922. The inorganic constituents of marine invertebrates. U.S. Geol. Survey, Professional Paper 124. Washington.Google Scholar
Czapek, F. 1921. Biochemie der Pflanzen. Jena.Google Scholar
Denigès, G. 1921. Détermination quantitative des plus faibles quantités de phosphates dans les produits biologiques par la méthode céruléomolybdique. Compt. Rend. Soc. Biol. Paris, 84, No. 17, 875877. Also C.R. Acad. des Sc. 1920, 171, 802.Google Scholar
Embden, G. 1921. Eine gravimetrische Bestimmungsmethode für kleine Phosphorsäuremengen. Z. physiol. Chem., 113, 138145.Google Scholar
Florentin, D. 1921. The determination of phosphates in water. Ann. chim. anal. chim. appl., 3, 295–6. Cited from Chem. Abstracts.Google Scholar
Jones, W., and Perkins, M. E. 1923. The gravimetric determination of organic phosphorus. J. Biol. Chem., 55, 343–51.CrossRefGoogle Scholar
Kenwood, H. R. 1911. Public health laboratory work. London.Google Scholar
Kleinmann, H. 1919. The determination of phosphoric acid as strych nine phosphomolybdic compound. Biochem. Zeitsch., 99, 150–89. Cited from Chem. Abstr.Google Scholar
Matthews, D. J. 1916. On the amount of phosphoric acid in the sea water off Plymouth Sound. Journ. Mar. Biol. Assocn., 11, 122130. Also Pt. II, loc. cit. 1917, 251–257.CrossRefGoogle Scholar
McHargue, J. S., and Peter, A. M. 1921. The removal of mineral plant-food by natural drainage waters. Kentucky Agric. Expt. Sta., Bull. No. 237.Google Scholar
Pentanelli, E. 1923. Influenza delle condizioni di vita sullo sviluppo di alcune alghe marine. Arch. di Sci. Biol., 4, 2187. Cited from Physiol. Abstr.Google Scholar
Posternak, S. 1920. Variations in the composition of ammonium phosphomolybdate. Comp. rend. Acad. des Sc., 170, 930–3.Google Scholar
Posternak, S. 1920. The determination of small quantities of phosphoric acid as barium phosphomolybdate in the presence and in the absence of organic phosphorus. Soc. de chim., 4th series, 27 & 28, 507–18.Google Scholar
Posternak, S. 1920. The technique of the determination of phosphoric acid as barium phosphomolybdate. Loc. cit., 564–8. Cited from Chem. Abstr.Google Scholar
Pouget, L., and Chouchak, D. 1909, 1911. Dosage colorimétrique de l'acide phosphorique. Bull. Soc. Chim. France, Series 4, 5, 104, and 9, 649.Google Scholar
Raben, E. 1920. Quantitative Bestimmung der im Meerwassergelösten Phosphorsäure. Wiss. Meeresuntersuch., 18, 124.Google Scholar
Strasburger, E. 1921. Text-book of botany. London.Google Scholar