Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T09:12:50.390Z Has data issue: false hasContentIssue false

Natural spatial variability of algal endosymbiont density in the coral Acropora globiceps: a small-scale approach along environmental gradients around Moorea (French Polynesia)

Published online by Cambridge University Press:  18 September 2013

Ophélie Ladrière
Affiliation:
Unit of Marine Ecology, Laboratory of Animal Ecology and Ecotoxicology, University of Liège, allée du 6 août, 15, Bat. B6C, B-4000 Liège (Sart Tilman), Belgium
Lucie Penin*
Affiliation:
Laboratoire d'Écologie Marine, FRE CNRS UR 3560 ECOMAR, and Laboratoire d'Excellence ‘CORAIL’, Université de La Réunion, BP 7151, 97715 Saint-Denis Cedex 09, Réunion Island, France USR 3278 CNRS EPHE, Centre de Recherches Insulaires et Observatoire de l'Environnement and Laboratoire d'Excellence ‘CORAIL’, Université de Perpignan 66860 Perpignan Cedex, France
Elodie Van Lierde
Affiliation:
Unit of Marine Ecology, Laboratory of Animal Ecology and Ecotoxicology, University of Liège, allée du 6 août, 15, Bat. B6C, B-4000 Liège (Sart Tilman), Belgium CNRS, Ecologie et Evolution des Interactions, UMR 5244 CNRS–UPVD, 58 Avenue Paul Alduy, 66860, Perpignan, France
Jeremie Vidal-Dupiol
Affiliation:
CNRS, Ecologie et Evolution des Interactions, UMR 5244 CNRS–UPVD, 58 Avenue Paul Alduy, 66860, Perpignan, France Université de Perpignan Via Domitia, Ecologie et Evolution des Interactions, UMR 5244 CNRS–UPVD, 58 Auenue Paul Alduy, 66860, Perpignan, France
Mohsen Kayal
Affiliation:
USR 3278 CNRS EPHE, Centre de Recherches Insulaires et Observatoire de l'Environnement and Laboratoire d'Excellence ‘CORAIL’, Université de Perpignan 66860 Perpignan Cedex, France Institut de Recherche pour le Développement, U227 CoRéUs 2 ‘Biocomplexité des récifs coralliens de l'Indo-Pacifique’ and Laboratoire d'Excellence ‘CORAIL’, BP A5, 98848 Nouméa, New Caledonia
Stéphane Roberty
Affiliation:
Unit of Marine Ecology, Laboratory of Animal Ecology and Ecotoxicology, University of Liège, allée du 6 août, 15, Bat. B6C, B-4000 Liège (Sart Tilman), Belgium
Mathieu Poulicek
Affiliation:
Unit of Marine Ecology, Laboratory of Animal Ecology and Ecotoxicology, University of Liège, allée du 6 août, 15, Bat. B6C, B-4000 Liège (Sart Tilman), Belgium
Mehdi Adjeroud
Affiliation:
Institut de Recherche pour le Développement, U227 CoRéUs 2 ‘Biocomplexité des récifs coralliens de l'Indo-Pacifique’ and Laboratoire d'Excellence ‘CORAIL’, BP A5, 98848 Nouméa, New Caledonia
*
Correspondence should be addressed to: L. Penin, Laboratoire d'Écologie Marine, FRE CNRS UR 3560 ECOMAR and Laboratoire d'Excellence ‘CORAIL’, Université de La Réunion, BP 7151, 97715 Saint-Denis Cedex 09, Réunion Island, France email: lucie.penin@univ-reunion.fr

Abstract

This study provides a baseline describing natural small scale variability of Symbiodinium density in the sentinel coral Acropora globiceps during the summer, under non-bleaching conditions. Spatial scales investigated range from the colony scale (1–10 cm, i.e. among branches of the same colony) to the reef scale (1–10 km, i.e. among stations distributed over several locations and depths), at Moorea Island, French Polynesia. The coral–Symbiodinium symbiosis is a key process in scleractinian coral physiology, and Symbiodinium density provides an easy-to-measure and inexpensive biomarker of this symbiosis health. Spatial variability of three major environmental factors: light intensity, sedimentation and water motion was also assessed to evaluate their potential link with Symbiodinium density. Density of Symbiodinium did not significantly differ within colonies or among colonies within a station. However, a marked depth gradient was observed, showing increasing density with increasing depth and decreasing light intensity. These observations provide an interesting reference for forthcoming comparisons with disturbed conditions, such as bleaching events.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adjeroud, M. (1997) Factors influencing spatial patterns on coral reefs around Moorea, French Polynesia. Marine Ecology Progress Series 159, 105119.CrossRefGoogle Scholar
Adjeroud, M., Chancerelle, Y., Schrimm, M., Perez, T., Lecchini, D., Galzin, R. and Salvat, B. (2005) Detecting the effects of natural disturbances on coral assemblages in French Polynesia: a decade survey at multiple scales. Aquatic Living Resources 18, 111123.CrossRefGoogle Scholar
Adjeroud, M., Michonneau, F., Edmunds, P.J., Chancerelle, Y., Lison de Loma, T., Penin, L., Thibaut, L., Vidal-Dupiol, J., Salvat, B. and Galzin, R. (2009) Recurrent disturbances, recovery trajectories, and resilience of coral assemblages on a South Central Pacific reef. Coral Reefs 28, 775780.CrossRefGoogle Scholar
Allemand, D., Tambutté, E., Zoccola, D. and Tambutté, S. (2011) Coral calcification, cells to reef. In Dubinsky, Z. and Stambler, N. (eds) Coral reef: an ecosystem in transition. Amsterdam: Springer, pp. 119150.CrossRefGoogle Scholar
Baker, A.C., Glynn, P.W. and Riegl, B. (2008) Climate change and coral reef bleaching: an ecological assessment of long-term impacts, recovery trends and future outlook. Estuarine, Coastal and Shelf Science 80, 435471.CrossRefGoogle Scholar
Bhagooli, R. and Yakovleva, I. (2004) Differential bleaching susceptibility and mortality patterns among four corals in response to thermal stress. Symbiosis 37, 121136.Google Scholar
Bongaerts, P., Riginos, C., Ridgway, T., Sampayo, E.M., van Oppen, M.J.H., Englebert, N., Vermeulen, F. and Hoegh-Guldberg, O. (2010) Genetic divergence across habitats in the widespread coral Seriatopora hystrix and its associated Symbiodinium. PLoS ONE 5(5), e10871.CrossRefGoogle ScholarPubMed
Brodie, J., De'ath, G., Devlin, M., Furnas, M. and Wright, M. (2007) Spatial and temporal patterns of near-surface chlorophyll-a in the Great Barrier Reef lagoon. Marine and Freshwater Research 58, 342353.CrossRefGoogle Scholar
Cabin, R.J. and Mitchell, R.J. (2000) To Bonferroni or not to Bonferroni: when and how are the questions. Bulletin of the Ecological Society of America 81, 246248.Google Scholar
Chancerelle, Y. (2000) Méthodes d'estimation des surfaces développées de coraux scléractiniaires à l'échelle d'une colonie ou d'un peuplement. Oceanologica Acta 23, 211219.CrossRefGoogle Scholar
D'Croz, L., Maté, J.L. and Oke, J.E. (2001) Responses to elevated sea water temperature and UV radiation in the coral Porites lobata from upwelling and non-upwelling environments on the Pacific coast of Panama. Bulletin of Marine Science 69, 203214.Google Scholar
Douglas, A.E. (2003) Coral bleaching—how and why? Marine Pollution Bulletin 46, 385392.CrossRefGoogle ScholarPubMed
Drew, E.A. (1972) The biology and physiology of alga—invertebrates symbioses. II. The density of symbiotic algal cells in a number of hermatypic hard corals and alcyonarians from various depths. Journal of Experimental Marine Biology and Ecology 9, 7175.CrossRefGoogle Scholar
Dustan, P. (1979) Distribution of zooxanthellae and photosynthetic chloroplast pigments of the reef-building coral Montastrea annularis (Ellis and Solander) in relation to depth on a West Indian coral reef. Bulletin of Marine Science 29, 7995.Google Scholar
Fagoonee, I., Wilson, H.B., Hassell, M.P. and Turner, J.R. (1999) The dynamics of zooxanthellae populations: a long-term study in the field. Science 283(5403), 843845.CrossRefGoogle ScholarPubMed
Falkowski, P.G., Dubinsky, Z., Muscatine, L. and Porter, J.W. (1984) Light and the bioenergetics of a symbiotic coral. Bioscience 34, 705709.CrossRefGoogle Scholar
Finelli, C., Helmuth, B., Pentcheff, N. and Wethey, D. (2006) Water flow influences oxygen transport and photosynthetic efficiency in corals. Coral Reefs 25, 4757.CrossRefGoogle Scholar
Fitt, W., Brown, B., Warner, M. and Dunne, R. (2001) Coral bleaching: interpretation of thermal tolerance limits and thermal thresholds in tropical corals. Coral Reefs 20, 5165.CrossRefGoogle Scholar
Fitt, W.K., McFarland, F.K., Warner, M.E. and Chilcoat, G.C. (2000) Seasonal patterns of tissue biomass and densities of symbiotic dinoflagellates in reef corals and relation to coral bleaching. Limnology and Oceanography 45, 677685.CrossRefGoogle Scholar
Frade, P.R., De Jongh, F., Vermeulen, F., Van Bleijswijk, J. and Bak, R.P.M. (2008a) Variation in symbiont distribution between closely related coral species over large depth ranges. Molecular Ecology 17, 691703.CrossRefGoogle ScholarPubMed
Frade, P.R., Englebert, N., Faria, J., Visser, P.M. and Bak, R.P.M. (2008b) Distribution and photobiology of Symbiodinium types in different light environments for three colour morphs of the coral Madracis pharensis: is there more to it than total irradiance? Coral Reefs 27, 913925.CrossRefGoogle Scholar
Goreau, T. and Hayes, R. (1994) Coral bleaching and ocean ‘Hot spots’. Ambio 23, 176180.Google Scholar
Hallock, P. (2001) Coral reefs, carbonate sedimentation, nutrients, and global change. In Stanley, G. (eds) The history and sedimentology of ancient reef ecosystems. New York: Kluwer Academic/Plenum Publishers, pp. 387427.CrossRefGoogle Scholar
Hoegh-Guldberg, O. and Smith, G.J. (1989) The effect of sudden changes in temperature, light and salinity on the population density and export of zooxanthellae from the reef corals Stylophora pistillata Esper and Seriatopora hystrix Dana. Journal of Experimental Marine Biology and Ecology 129, 279303.CrossRefGoogle Scholar
Jones, R.J. and Yellowlees, D. (1997) Regulation and control of intracellular algae (= zooxanthellae) in hard corals. Philosophical Transactions of the Royal Society of London Series B—Biological Sciences 352, 457468.CrossRefGoogle Scholar
Kayal, M., Lenihan, H., Pau, C., Penin, L. and Adjeroud, M. (2011) Associational refuges among corals mediate impacts of a crown-of-thorns starfish Acanthaster planci outbreak. Coral Reefs 30, 827837.CrossRefGoogle Scholar
Lasker, H.R. (2003) Zooxanthella densities within a Caribbean octocoral during bleaching and non-bleaching years. Coral Reefs 22, 2326.CrossRefGoogle Scholar
Leal, M.C., Nunes, C., Alexandre, D., Silva, T.L.d., Reis, A., Dinis, M.T. and Calado, R. (2012) Parental diets determine the embryonic fatty acid profile of the tropical nudibranch Aeolidiella stephanieae: the effect of eating bleached anemones. Marine Biology 159, 17451751.CrossRefGoogle Scholar
Lesser, M., Stochaj, W., Tapley, D. and Shick, J. (1990) Bleaching in coral reef anthozoans: effects of irradiance, ultraviolet radiation, and temperature on the activities of protective enzymes against active oxygen. Coral Reefs 8, 225232.CrossRefGoogle Scholar
Li, S., Yu, K.F., Shi, Q., Chen, T.R., Zhao, M.X. and Zhao, J.X. (2008) Interspecies and spatial diversity in the symbiotic zooxanthellae density in corals from northern South China Sea and its relationship to coral reef bleaching. Chinese Science Bulletin 53, 295303.CrossRefGoogle Scholar
Marshall, P.A. and Baird, A.H. (2000) Bleaching of corals on the Great Barrier Reef: differential susceptibilities among taxa. Coral Reefs 19, 155163.CrossRefGoogle Scholar
Mass, T., Kline, D.I., Roopin, M., Veal, C.J., Cohen, S., Iluz, D. and Levy, O. (2010) The spectral quality of light is a key driver of photosynthesis and photoadaptation in Stylophora pistillata colonies from different depths in the Red Sea. Journal of Experimental Biology 213, 40844091.CrossRefGoogle Scholar
McClanahan, T.R., Weil, E., Cortés, J., Baird, A.H. and Ateweberhan, M. (2009) Consequences of coral bleaching for sessile reef organisms. In van Oppen, M.J.H. and Lough, J.M. (eds) Coral bleaching. Berlin: Springer, pp. 121138.CrossRefGoogle Scholar
Moothien-Pillay, R.M., Willis, B. and Terashima, H. (2005) Trends in the density of zooxanthellae in Acropora millepora (Ehrenberg, 1834) at the Palm Island Group, Great Barrier Reef, Australia. Symbiosis 38, 209226.Google Scholar
Moran, M.D. (2003) Arguments for rejecting the sequential Bonferroni in ecological studies. Oikos 100, 403405.CrossRefGoogle Scholar
Muscatine, L. and Porter, J.W. (1977) Reef corals–mutualistic symbioses adapted to nutrient-poor environments. Bioscience 27, 454460.CrossRefGoogle Scholar
Oliver, J.K. (1984) Intra-colony variation in the growth of Acropora formosa: extension rates and skeletal structure of white (zooxanthellae-free) and brown-tipped branches. Coral Reefs 3, 139147.CrossRefGoogle Scholar
Penin, L., Adjeroud, M., Schrimm, M. and Lenihan, H. (2007) High spatial variability in coral bleaching around Moorea (French Polynesia): patterns across locations and water depths. Comptes Rendus Biologies 330, 171181.CrossRefGoogle ScholarPubMed
Penin, L., Vidal-Dupiol, J. and Adjeroud, M. (2013) Response of coral assemblages to thermal stress: are bleaching intensity and spatial patterns consistent between events? Environmental Monitoring and Assesment 185, 50315042.CrossRefGoogle ScholarPubMed
Rowan, R. and Knowlton, N. (1995) Intraspecific diversity and ecological zonation in coral–algal symbiosis. Proceedings of the National Academy of Sciences of the United States of America 92, 28502853.CrossRefGoogle ScholarPubMed
Salvat, B.The 1991 bleaching event in the Society Islands, French Polynesia. In Proceedings of the Proceedings of the 7th International Coral Reef Symposium, Guam, 22–27 June 1992. Guam: University of Gaum Press, p. 73.Google Scholar
Sawall, Y., Teichberg, M., Seemann, J., Litaay, M., Jompa, J. and Richter, C. (2011) Nutritional status and metabolism of the coral Stylophora subseriata along a eutrophication gradient in Spermonde Archipelago (Indonesia). Coral Reefs 30, 841853.CrossRefGoogle Scholar
Shenkar, N., Fine, M., Kramarsky-Winter, E. and Loya, Y. (2006) Population dynamics of zooxanthellae during a bacterial bleaching event. Coral Reefs 25, 223227.CrossRefGoogle Scholar
Stat, M., Carter, D. and Hoegh-Guldberg, O. (2006) The evolutionary history of Symbiodinium and scleractinian hosts—Symbiosis, diversity, and the effect of climate change. Perspectives in Plant Ecology, Evolution and Systematics 8, 2343.CrossRefGoogle Scholar
Steele, R.D. (1976) Light intensity as a factor in the regulation of the density of symbiotic zooxanthellae in Aiptasia tagetes (Coelenterata, Anthozoa). Journal of Zoology 179, 387405.CrossRefGoogle Scholar
Steen, R.G. and Muscatine, L. (1987) Low temperature evokes rapid exocytosis of symbiotic algae by a sea anemone. Biological Bulletin. Marine Biological and Laboratory, Woods Hole 172, 246263.CrossRefGoogle Scholar
Stewart, G.J., Caldwell, J.M., Cloutier, A.R. and Flight, L.E. (2006) Water Resources Data—Maine Water Year 2005. Augusta, ME: Maine Water Science Center.Google Scholar
Stimson, J., Sakai, K. and Sembali, H. (2002) Interspecific comparison of the symbiotic relationship in corals with high and low rates of bleaching-induced mortality. Coral Reefs 21, 409421.CrossRefGoogle Scholar
Sunagawa, S., Cortes, J., Jimenez, C. and Lara, R. (2008) Variation in cell densities and pigment concentrations of symbiotic dinoflagellates in the coral Pavona clavus in the eastern Pacific (Costa Rica). Ciencias Marinas 34, 113123.CrossRefGoogle Scholar
Thompson, T.L. and Glenn, E.P. (1994) Plaster standards to measure water motion. Limnology and Oceanography 39, 17681779.CrossRefGoogle Scholar
Titlyanov, E.A., Shaposhnikova, M.G. and Zvalinskii, V.I. (1980) Photosynthesis and adaptation of corals to irradiance. 1. Contents and native-state of photosynthetic pigments in symbiotic microalga. Photosynthetica 14, 413421.Google Scholar
Titlyanov, E.A., Titlyanova, T.V., Yamazato, K. and van Woesik, R. (2001) Photo-acclimation dynamics of the coral Stylophora pistillata to low and extremely low light. Journal of Experimental Marine Biology and Ecology 263, 211225.CrossRefGoogle Scholar
Toller, W.W., Rowan, R. and Knowlton, N. (2001) Zooxanthellae of the Montastraea annularis species complex: patterns of distribution of four taxa of Symbiodinium on different reefs and across depths. Biological Bulletin. Marine Biological and Laboratory, Woods Hole 201, 348359.CrossRefGoogle ScholarPubMed
Venn, A.A., Loram, J.E. and Douglas, A.E. (2008) Photosynthetic symbioses in animals. Journal of Experimental Botany 59, 10691080.CrossRefGoogle ScholarPubMed
Wallace, C. (1999) Staghorn corals of the world: a revision of the genus Acropora. Collingwood, Victoria: CSIRO Publishing.CrossRefGoogle Scholar
Weis, V.M. (2008) Cellular mechanisms of cnidarian bleaching: stress causes the collapse of symbiosis. Journal of Experimental Biology 211, 30593066.CrossRefGoogle ScholarPubMed
Wilkerson, F.P., Kobayashi, D. and Muscatine, L. (1988) Mitotic index and size of symbiotic algae in Caribbean reef corals. Coral Reefs 7, 2936.CrossRefGoogle Scholar