Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T14:54:20.011Z Has data issue: false hasContentIssue false

Microsatellite variation of mussels (Mytilus galloprovincialis) in central and eastern Mediterranean: genetic panmixia in the Aegean and the Ionian Seas

Published online by Cambridge University Press:  11 March 2014

Ioannis A. Giantsis
Affiliation:
Laboratory of Ichthyology and Fisheries, Department of Animal Production, Faculty of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
Nadia Mucci
Affiliation:
Laboratorio di Genetica, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Via Ca Fornacetta 9, I -40064 Ozzano dell'Emilia (Bologna), Italy
Ettore Randi
Affiliation:
Laboratorio di Genetica, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Via Ca Fornacetta 9, I -40064 Ozzano dell'Emilia (Bologna), Italy
Theodore J. Abatzopoulos
Affiliation:
Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
Apostolos P. Apostolidis*
Affiliation:
Laboratory of Ichthyology and Fisheries, Department of Animal Production, Faculty of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
*
Correspondence should be addressed to: A.P. Apostolidis, Laboratory of Ichthyology and Fisheries, Department of Animal Production, Faculty of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece email: apaposto@agro.auth.gr

Abstract

Genetic variation of mussels Mytilus galloprovincialis in central–eastern Mediterranean Sea is investigated in this study. A total of 550 individuals sampled from two cultured and 11 wild populations from Italy, Croatia, Greece and Turkey were genotyped at 10 microsatellite loci. Significant deviations from Hardy–Weinberg expectations were observed in more than 75% of the tests performed. All populations showed extensive heterozygote deficits, which remained at significant levels even after correction for null alleles, providing evidence that null alleles were only partly responsible for deviations from Hardy–Weinberg equilibrium in these molluscs. Moreover, null alleles seem to have limited influence on the population genetic differentiation. Similar levels of multi-locus heterozygosity and allelic richness were observed in all populations, cultured and wild, implying the sustainability of the exploited populations. Lack of isolation by distance and markedly low genetic differentiation between the nine Greek sampling sites (shoreline >1000 km) was revealed by Mantel tests, FST values, exact tests and analyses of molecular variance, indicating that mussels from these regions are either at or close to panmixia. Similarly, patterns of genetic homogeneity were also found between the two Italian samples, whereas the observed genetic differentiation of the populations from Turkey and Croatia probably reflects the specific topographic and oceanographic conditions of these regions.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Addison, J.A., Ort, B.S., Mesa, K.A. and Pogson, G.H. (2008) Range-wide genetic homogeneity in the California sea mussel (Mytilus californianus): a comparison of allozymes, nuclear DNA markers and mitochondrial DNA sequences. Molecular Ecology 17, 42224232.CrossRefGoogle ScholarPubMed
Arsenoudi, P., Scouras, Z. and Chintiroglou, C.C. (2003) First evaluation of Mytilus galloprovincialis LMK, natural populations in Thermaikos Gulf: Structure and distribution. Fresenius Environmental Bulletin 12, 13841393.Google Scholar
Beaumont, A.R., Hawkins, M.P., Doig, F.L., Davies, I.M. and Snow, M. (2008) Three species of Mytilus and their hybrids identified in a Scottish Loch: natives, relicts and invaders? Journal of Experimental Marine Biology and Ecology 367, 100110.CrossRefGoogle Scholar
Belkhir, K., Borsa, P., Goudet, J., Chickhi, L. and Bonhomme, F. (2004) Genetix v. 4.05, Logiciel sous WindowsTM pour la genetique des populations. Montpellier: Laboratoire Génome et Population, Université Montpellier 2.Google Scholar
Bierne, N., Borsa, P., Daguin, C., Jollivet, D., Viard, F., Bonhomme, F. and David, P. (2003) Introgression patterns in the mosaic hybrid zone between Mytilus edulis and M. galloprovincialis. Molecular Ecology 12, 447461.CrossRefGoogle ScholarPubMed
Borrero-Pérez, G.H., González-Wangüemert, M., Marcos, C. and Pérez-Ruzafa, A. (2011) Phylogeography of the Atlanto-Mediterranean sea cucumber Holothuria (Holothuria) mammata: the combined effects of the historical processes and current oceanographic pattern. Molecular Ecology 20, 19641975.CrossRefGoogle ScholarPubMed
Carlsson, J. (2008) Effects of microsatellite null alleles on assignment testing. Journal of Heredity 99, 616623.CrossRefGoogle ScholarPubMed
Cavalli-Sforza, L.L. and Edwards, A.W.F. (1967) Phylogenetic analysis: models and estimation procedures. American Journal of Human Genetics 19, 233257.Google ScholarPubMed
Chapuis, M.P. and Estoup, A. (2007) Microsatellite null alleles and estimation of population differentiation. Molecular Biology and Evolution 24, 621631.CrossRefGoogle ScholarPubMed
Chasnov, J.R. (2010) The evolution from females to hermaphrodites results in a sexual conflict over mating in androdioecious nematode worms and clam shrimp. Journal of Evolutionary Biology 23, 539556.CrossRefGoogle Scholar
Coombs, J.A., Letcher, B.H. and Nislow, K.H. (2008) CREATE: a software to create input files from diploid genotyping data for 52 genetic software programs. Molecular Ecology Resources 8, 578580.CrossRefGoogle ScholarPubMed
Culver, M., Menotti-Reymond, M.A. and O'Brien, S.J. (2001) Patterns of size homoplasy at 10 microsatellite loci in Pumas (Puma concolor). Molecular Biology and Evolution 17, 489–458.Google Scholar
Dakin, E.E. and Avise, J.C. (2004) Microsatellite null alleles in parentage analysis. Heredity 93, 504509.CrossRefGoogle ScholarPubMed
David, P., Pujol, B., Viard, F., Castella, V. and Goudet, J. (2007) Reliable selfing rate estimates from imperfect population genetic data. Molecular Ecology 16, 24742487.CrossRefGoogle ScholarPubMed
De La Cruz, F.L., Rio-Portilla, M.A.D. and Gallardo-Escarate, C. (2010) Genetic variability of cultured populations of red abalone in Chile: an approach based on heterologous microsatellites. Journal of Shellfish Research 29, 709715.CrossRefGoogle Scholar
Dempster, A.P., Laird, N.M. and Rubin, D.B. (1977) Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Series B 39, 138.Google Scholar
Diz, A.P. and Presa, P. (2008) Regional patterns of microsatellite variation in Mytilus galloprovincialis from the Iberian Peninsula. Marine Biology 154, 277286.CrossRefGoogle Scholar
Diz, A.P. and Presa, P. (2009) The genetic diversity pattern of Mytilus galloprovincialis in Galician Rias (NW Iberian estuaries). Aquaculture 287, 278285.CrossRefGoogle Scholar
Excoffier, L., Laval, G. and Schneider, S. (2005) Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1, 4750.Google Scholar
Felsenstein, J. (2005) PHYLIP (Phylogeny Inference Package) Version 3.69. Seattle, WA: Department of Genome Sciences, University of Washington.Google Scholar
Gardeström, J., Pereyra, R.T. and Andrè, C. (2008) Characterization of six microsatellite loci in the Baltic blue mussel Mytilus trossulus and cross-species amplification in North Sea Mytilus edulis. Conservation Genetics 9, 10031005.CrossRefGoogle Scholar
Giantsis, I.A., Kravva, N. and Apostolidis, A.P. (2012) Genetic characterization and evaluation of anthropogenic impacts on genetic patterns in cultured and wild populations of mussels (Mytilus galloprovincialis) from Greece. Genetics and Molecular Research 11, 38143823.CrossRefGoogle ScholarPubMed
Gosling, E.M. (2003) Bivalve molluscs. Biology, ecology and culture. Oxford: Fishing News Books.CrossRefGoogle Scholar
Goudet, J. (2005) PCAGEN 1.2. Available at: http://www2.unil.ch/popgen/softwares/pcagen.htm (accessed 31 January 2014).Google Scholar
Graves, J.E. (1998) Molecular insights into the population structures of cosmopolitan marine fishes. Journal of Heredity 89, 427437.CrossRefGoogle Scholar
Hauffe, H.C. and Sbordoni, V. (2009) The synergy between conservation biology and genetics. In Bertorelle, G., Bruford, M.W., Hauffe, H.C., Rizzoli, A. and Vernessi, C. (eds) Population genetics for animal conservation. Cambridge: Cambridge University Press, pp. 39.Google Scholar
Hedrick, P.W. (2000) Genetics of populations. 2nd edition. Boston, MA: Jones and Bartlett.Google Scholar
Hilbish, T.J., Carson, E.W., Plante, J.R., Weaver, L.A. and Gilg, M.R. (2002) Distribution of Mytilus edulis, M. galloprovincialis, and their hybrids in open-coast populations of mussels in southwestern England. Marine Biology 140, 137142.Google Scholar
Hillis, D.M., Moritz, C. and Mable, B.K. (1996) Molecular systematics. 2nd edition. Sanderland, MA: Sinauer Associates Inc.Google Scholar
Hoarau, G., Boon, E., Jongma, D.N., Ferber, S., Palsson, J., Van Der Veer, H.W., Rijnsdorp, A.D., Stam, W.T. and Olsen, J.L. (2005) Low effective population size and evidence for inbreeding in an overexploited flatfish, plaice (Pleuronectes platessa L.). Proccedings of the Royal Society B: Biological Sciences 272, 497503.Google Scholar
Jombart, T. (2008) Adegenet: an R package for the multivariate analysis of genetic markers. Bioinformatics 24, 14031405.CrossRefGoogle Scholar
Kalinowski, S.T. (2005) HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Molecular Ecology Notes 5, 187189.CrossRefGoogle Scholar
Karakousis, Y. and Skibinski, D.O.F. (1992) An analysis of allozyme, mitochondrial DNA and morphological variation in mussel (Mytilus galloprovincialis) populations from Greece. Experientia 48, 878881.CrossRefGoogle Scholar
Karayucel, S., Çelik, M.Y., Karayücel, I. and Erik, G. (2010) Growth and production of raft cultivated Mediterranean mussel (Mytilus galloprovincialis Lamarck, 1819) in Sinop, Black Sea. Turkish Journal of Fisheries and Aquatic Sciences 10, 0917.CrossRefGoogle Scholar
Karayucel, S., Çelik, M.Y., Karayücel, I., Ozturk, R. and Eyuboglu, B. (2013) Effects of stocking density on survival, growth and biochemical composition of cultured mussels (Mytilus galloprovincialis, Lamarck 1819) from an offshore submerged longline system. Aquaculture Research. doi:10.1111/are.12291Google Scholar
Kijewski, T., Smietanka, B., Zbawicka, M., Gosling, E., Hummel, H. and Wenne, R. (2011) Distribution of Mytilus taxa in European coastal areas as inferred from molecular markers. Journal of Sea Research 65, 224234.CrossRefGoogle Scholar
Koukaras, K. and Nikolaidis, G. (2004) Dinophysis blooms in Greek coastal waters (Thermaikos Gulf, NW Aegean Sea). Journal of Plankton Research 4, 445457.CrossRefGoogle Scholar
Kravva, N., Staikou, A. and Triantaphyllidis, C. (2000) Genetic composition and temporal genetic variation in Mytilus galloprovincialis populations of the Thermaikos gulf (Northern Aegean Sea). Biologia 55, 289297.Google Scholar
Kurihara, T., Fuseya, R., Katoh, M. and Inoue, K. (2010) Possibility of self-fertilization during hatchery culturing of giant clam, Tridacna crocea. Plankton and Benthos Research 5, 1116.CrossRefGoogle Scholar
Ladoukakis, E.D., Saavedra, C., Magoulas, A. and Zouros, E. (2002) Mitochondrial DNA variation in a species with two mitochondrial genomes: the case of Mytilus galloprovincialis from the Atlantic, the Mediterranean and the Black Sea. Molecular Ecology 11, 755769.CrossRefGoogle Scholar
Lallias, D., Stockdale, R., Boudry, P., Lapègue, S. and Beaumont, A.R. (2009) Characterization of ten microsatellite loci in the blue mussel Mytilus edulis. Journal of Shellfish Research 28, 547551.CrossRefGoogle Scholar
Launey, S., Ledu, C., Bourdy, P., Bonhomme, F. and Naciri-Graven, Y. (2002) Geographic structure in the European Flat Oyster (Ostrea edulis L.) as revealed by microsatellite polymorphism. Journal of Heredity 93, 331338.CrossRefGoogle ScholarPubMed
Lawson Handley, L.J., Byrne, K., Santucci, F., Townsend, S., Taylor, M., Bruford, M.W. and Hewitt, G.M. (2007) Genetic structure of European sheep breeds. Heredity 99, 620631.CrossRefGoogle ScholarPubMed
Lemer, S., Rochel, E. and Planes, S. (2011) Correction method for null alleles in species with variable microsatellite flanking regions, a case study of the black-lipped pearl oyster Pinctada margaritifera. Journal of Heredity 102, 243246.CrossRefGoogle ScholarPubMed
Lind, C.E., Evans, B.S., Knauer, J., Taylor, J.U. and Jerry, D.R. (2009) Decreased diversity and a reduced effective population size in cultured silver-lipped oysters (Pinctada maxima). Aquaculture 286, 1219.CrossRefGoogle Scholar
Lougheed, S.C., Gibbs, H.L., Prior, K.A. and Weatherhead, P.J. (2000) A comparison of RAPD versus microsatellite DNA markers in population studies of the Massasauga rattlesnake. Journal of Heredity 91, 458463.CrossRefGoogle ScholarPubMed
Mantziafou, A. and Lascaratos, A. (2004) An eddy resolving numerical study of the general circulation and deep-water formation in the Adriatic Sea. Deep-Sea Research Part I 51, 921952.CrossRefGoogle Scholar
Marin, A., Fujimoto, T. and Arai, K. (2013) Genetic structure of the Peruvian scallop Argopecten purpuratus inferred from mitochondrial and nuclear DNA variation. Marine Genomics 9, 18.CrossRefGoogle ScholarPubMed
Martinez, G., Mettifogo, L., Perez, M.A. and Callejas, C. (2007) A method to eliminate self-fertilization in a simultaneous hermaphrodite scallop. 1. Effects on growth and survival of larvae and juveniles. Aquaculture 273, 459469.CrossRefGoogle Scholar
Meirmans, P.G. and Van Tiendersen, P.H. (2004) GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Molecular Ecology Notes 4, 792794.CrossRefGoogle Scholar
Myrand, B., Tremblay, R., Sevigny, J.M. (2009) Decreases in multi-locus heterozygosity in suspension-cultured mussels (Mytilus edulis) through loss of the more heterozygous individuals. Aquaculture 295, 188194.CrossRefGoogle Scholar
Nei, M. (1978) Estimation of average heterozygosity and genetic distance from small number of individuals. Genetics 89, 583590.CrossRefGoogle ScholarPubMed
Nikula, R. and Väinölä, R. (2003) Phylogeography of Cerastoderma glaucum (Bivalvia: Cardiidae) across Europe: a major break in the Eastern Mediterranean. Marine Biology 143, 339350.CrossRefGoogle Scholar
Olson, D.B., Kourafalou, V.H., Johns, W.E., Samuels, G. and Veneziani, M. (2007) Aegean surface circulation from a Satellite-Tracked Drifter Array. Journal of Physical Oceanography 37, 18981917.CrossRefGoogle Scholar
Oraic, D. and Zrncic, S. (2005) An overview of Health Control in Croatian Aquaculture. Veterinary Research Communication 29 (Supplement 2), 139142.CrossRefGoogle ScholarPubMed
Ortiz-Zarragoitia, M. and Cajaraville, M.P. (2010) Intersex and oocyte atresia in a mussel population from the Biosphere's Reserve of Urdaibai (Bay of Biscay). Ecotoxicology and Environmental Safety 73, 693701.CrossRefGoogle Scholar
Page, R.D.M. (1996) TreeView: an application to display phylogenetic trees on personal computers. Computer Applications in Biosciences 12, 357358.Google ScholarPubMed
Panucci-Papadopoulou, M.A., Raitsos, D.E. and Corsini-Foka, M. (2012) Biological invasions and climatic warming: implications for south-eastern Aegean ecosystem functioning. Journal of the Marine Biological Association of the United Kingdom 92, 777789.CrossRefGoogle Scholar
Parisi, G., Centoducati, G., Gasco, L., Gatta, P.P., Moretti, V.M., Piccolo, G., Roncarati, A., Terova, G. and Pais, A. (2012) Molluscs and echinoderms aquaculture: biological aspects, current status, technical progress and future perspectives for the most promising species in Italy. Italian Journal of Animal Science 11, 397413.CrossRefGoogle Scholar
Peakall, R.O.D. and Smouse, P.E. (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6, 288295.CrossRefGoogle Scholar
Piry, S., Alapetite, A., Cornuet, J.M., Paetkau, D., Baudouin, L. and Estoup, A. (2004) GeneClass2: a software for genetic assignment and first-generation migrant detection. Journal of Heredity 95, 536539.CrossRefGoogle ScholarPubMed
Pompanon, F., Bonin, A., Bellemain, E. and Taberlet, P. (2005) Genotyping errors: causes, consequenses and solutions. Nature Reviews Genetics 6, 847859.CrossRefGoogle Scholar
Presa, P., Peréz, M. and Diz, A.P. (2002) Polymorphic microsatellite markers for blue mussels (Mytilus spp.). Conservation Genetics 3, 441443.CrossRefGoogle Scholar
Radović, J., Čivić, K., Topić, R. and Vukelić, VP (2009) Biodiversity of Croatia. 2nd revised edition. Zagreb: State Institute for Nature Protection, Ministry of Culture, Republic of Croatia.Google Scholar
Raymond, M. and Rousset, F. (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenism. Journal of Heredity 86, 248249.CrossRefGoogle Scholar
Reynolds, J., Weir, B.S. and Cockerham, C.C. (1983) Estimation of the coancestry coefficient: basis for a short term genetic distance. Genetics 105, 767779.CrossRefGoogle Scholar
Rhode, C., Vervalle, J., Bester-van der Merwe, A.E. and Roodt-Wilding, R. (2013) Detection of molecular signatures of selection at microsatellite loci in the South African abalone (Haliotis midae) using a population genomic approach. Marine Genomics 10, 2736.CrossRefGoogle ScholarPubMed
Riginos, C. and Cunningham, C.W. (2005) Local adaptation and species segregation in two mussel (Mytilus edulis × Mytilus trossulus) hybrid zones. Molecular Ecology 14, 381400.CrossRefGoogle ScholarPubMed
Schuelke, M. (2000) An economic method for the fluorescent labelling of PCR fragments. Nature Biotechnology 18, 233234.CrossRefGoogle ScholarPubMed
Ryman, N. and Palm, S. (2006) POWSIM: a computer program for assessing statistical power when testing for genetic differentiation. Molecular Ecology Notes 6, 600602.CrossRefGoogle Scholar
Sanna, D., Cossu, P., Dedola, G.L., Scarpa, F., Maltagliati, F., Castelli, A., Franzoi, P., Lai, T., Cristo, B., Curini-Galletti, M., Francalacci, P. and Casu, M. (2013) Mitochondrial DNA reveals genetic structuring of Pinna nobilis across the Mediterranean Sea. PLoS ONE 8, e67372. doi:10.1371/journal.pone.0067372.CrossRefGoogle ScholarPubMed
Sekino, M., Hara, M. and Taniguchi, N. (2002) Loss of microsatellite and mitochondrial DNA variation in hatchery strains of Japanese flounder Paralichthys olivaceus. Aquaculture 213, 101122.CrossRefGoogle Scholar
Smietanka, B., Zbawicka, M., Sanko, T., Wenne, R. and Burzynski, A. (2013) Molecular population genetics of male and female mitochondrial genomes in subarctic Mytilus trossulus. Marine Biology 160, 17091721.CrossRefGoogle ScholarPubMed
Stambuk, A., Srut, M., Satovic, Z., Tkalec, M. and Klobucar, G.I.V. (2013) Gene flow vs. pollution pressure: genetic diversity of Mytilus galloprovincialis in eastern Adriatic. Aquatic Toxicology 136–137, 2231.CrossRefGoogle ScholarPubMed
Teixeira de Sousa, J., Joaquim, S., Matias, D., Ben-Hamadou, R. and Leitao, A. (2012) Evidence of non-random chromosome los in bivalves: differential chromosomal susceptibility in aneuploid metaphases of Crassostrea angulata (Ostreidae) and Ruditapes decussatus (Veneridae). Aquaculture 344, 239241.CrossRefGoogle Scholar
Theodorou, J.A., Viaene, J., Sorgeloos, P. and Tzovenis, I. (2011) Production and marketing trends of the cultured Mediterranean mussel Mytilus galloprovincialis Lamarck 1819, in Greece. Journal of Shellfish Research 30, 859874.CrossRefGoogle Scholar
Toro, J.E., Ojeda, J.A. and Vergara, A.M. (2004) The genetic structure of Mytilus chilensis (Hupe 1854) populations along the Chilean coast based on RAPDs analysis. Aquaculture Research 35, 14661471.CrossRefGoogle Scholar
Triantafyllidis, A., Apostolidis, A.P., Katsares, V., Kelly, E., Mercer, J., Hughes, M., Jorstad, K.E., Tsolou, A., Hynes, R. and Triantaphyllidis, C. (2005) Mitochondrial DNA variation in the European lobster (Hommarus gammarus) throughout the range. Marine Biology 146, 223235.CrossRefGoogle Scholar
Van Oosterhout, C., Hutchinson, W.F., Willis, D.P.M. and Shipley, P.F. (2004) MICROCHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4, 535538.CrossRefGoogle Scholar
Varela, M.A., Gonzáles-Tizόn, A., Marinas, L. and Martinez-Lage, A. (2007) Genetic divergence detected by ISSR markers and characterization of microsatellite regions in Mytilus mussels. Biochemical Genetics 45, 565578.CrossRefGoogle ScholarPubMed
Venier, P., Tallandini, L. and Bisol, P.M. (2003) Characterization of coastal sites by applying genetic and genotoxicity markers in Mytilus galloprovincialis and Tapes philippinarum. Journal of Chemical Ecology 19, 113128.CrossRefGoogle Scholar
Verhoeven, K.J.F., Simonsen, K.L. and McIntyre, L.M. (2005) Implementing false discovery rate control: increasing your power. Oikos 108, 643647.CrossRefGoogle Scholar
Vidal, R., Penaloza, C., Urzua, R. and Toro, J.E. (2009) Screening of ESTs from Mytilus for the detection of SSR markers in Mytilus californianus. Molecular Ecology Resources 9, 14091411.CrossRefGoogle ScholarPubMed
Wei, K., Wood, A.R. and Gardner, J.P.A. (2013) Population genetic variation in the New Zealand greenshell mussel: locus-dependent conflicting signals of weak structure and high gene flow balanced against pronounced structure and high self-recruitment. Marine Biology 160, 931949.CrossRefGoogle Scholar
Westfall, K.M. and Gardner, J.P.A. (2010) Genetic diversity of southern hemisphere blue mussels (Bivalvia: Mytilidae) and the identification of non-indigenous taxa. Biological Journal of the Linnean Society 101, 898909.CrossRefGoogle Scholar
White, T.A., Fotherby, H.A., Stephens, P.A. and Hoelzel, A.R. (2011) Genetic panmixia and demographic dependence across the North Atlantic in the deep-sea fish, blue hake (Antimora rostrata). Heredity 106, 690699.CrossRefGoogle ScholarPubMed
Yu, H. and Li, Q. (2007) Development of EST-SSRs in the Mediterranean blue mussel, Mytilus galloproviancialis. Molecular Ecology Notes 7, 13081310.CrossRefGoogle Scholar