Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T02:59:11.142Z Has data issue: false hasContentIssue false

Macrobenthic community structure in tropical estuaries: the effect of sieve mesh-size and sampling depth on estimated abundance, biomass and composition

Published online by Cambridge University Press:  26 March 2013

Ana Paula Maria Cavalcanti Valença*
Affiliation:
Universidade Federal de Pernambuco; Centro de Ciências Biológicas (CCB), Departamento de Zoologia, Auenida Prof. Moraes Rêgo s/n, Cidade Universitária, 50670-420, Recife, PE—Brazil
Paulo Jorge Parreira dos Santos
Affiliation:
Universidade Federal de Pernambuco; Centro de Ciências Biológicas (CCB), Departamento de Zoologia, Auenida Prof. Moraes Rêgo s/n, Cidade Universitária, 50670-420, Recife, PE—Brazil
*
Correspondence should be addressed to: Ana Paula Maria Cavalcanti Valença, Universidade Federal de Pernambuco; Centro de Ciências Biológicas (CCB), Departamento de Zoologia, Avenida Prof. Moraes Rêgo s/n, Cidade Universitária, 50670-420—Recife, PE—Brazil email: ana.mcvalenca@gmail.com

Abstract

Macrobenthic data from estuaries along the Pernambuco coast in north-eastern Brazil were analysed to evaluate the effect of sieve mesh size (1.0 mm × 0.5 mm) and sampling depth (0–10 cm × 0–20 cm) on the description of infaunal communities, in an attempt to discuss standardized sampling procedures for different ecological studies objectives in these ecosystems. In general, the difference in sieve retention was less evident for biomass but was important for abundance: the 1.0 mm sieve retained only 27% of total individuals but 77% of total biomass. Regarding sampling depth, the 0–10 cm layer contained most individuals (94%) but contributed just 64% of the overall biomass. Although no strong differences in community structure were observed at most sites with the use of different sieves, the correlations among community dissimilarity using different meshes with environmental parameters (organic matter, total-N and microphytobenthos) indicated that the use of the 0.5 mm sieve will allow a better evaluation of the status of these estuaries. The results also highlight the importance of taking the vertical distribution of tropical macrofauna into account for quantitative estimates: for taxa composition and abundance the top layer is clearly essential, whereas for biomass the deeper layers should also be considered.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alongi, D.M. (1990) The ecology of tropical soft-bottom benthic ecosystems. Oceanography and Marine Biology: an Annual Review 28, 318496.Google Scholar
Anderson, M.J. (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecology 26, 3246.Google Scholar
APHA (1989) Standard methods for the examination of water and wastewater. 17th edition.Washington, DC: American Public Health Association, 1550 pp.Google Scholar
Araújo, M.C.B. and Costa, M.F. (2006) The significance of solid wastes with land-based sources for a tourist beach: Pernambuco, Brazil. Pan-American Journal of Aquatic Sciences 1, 2834.Google Scholar
Ayres, M., Ayres, M. Jr, Ayres, D.L. and Santos, A.A.S. (2007) BioEstat: Aplicações estatísticas nas áreas das ciências biomédicas. 5th edition.Belém: Sociedade Civil de Mamirauá, MCT–CNPq, 324 pp.Google Scholar
Bachelet, G. (1990) The choice of a sieving mesh size in the quantitative assessment of marine macrobenthos: a necessary compromise between aims and constraints. Marine Environmental Research 30, 2135.CrossRefGoogle Scholar
Barros, F., Hatje, V., Figueiredo, M.B., Magalhães, W.F., Dóre, H.S. and Emídio, E.S. (2008) The structure of the benthic macrofaunal assemblages and sediments characteristics of the Paraguaçu estuarine system, NE, Brazil. Estuarine, Coastal and Shelf Science 78, 753762.CrossRefGoogle Scholar
Bemvenuti, C.E., Rosa-Filho, J.S. and Elliott, M. (2003) Changes in soft-bottom macrobenthic assemblages after a sulphuric acid spill in the Rio Grande Harbor (RS, Brazil). Brazilian Journal of Biology 63, 183194.CrossRefGoogle Scholar
Benedetti-Cecchi, L., Airoldi, L., Abbiati, M. and Cinelli, F. (1996) Estimating the abundance of benthic invertebrates: a comparison of procedures and variability between observers. Marine Ecology Progress Series 138, 93101.CrossRefGoogle Scholar
Carvalho, P.V.V.C., Santos, P.J.P. and Botter-Carvalho, M.L. (2010) Assessing the severity of disturbance for intertidal and subtidal macrobenthos: the phylum-level meta-analysis approach in tropical estuarine sites of northeastern Brazil. Marine Pollution Bulletin 60, 873887.CrossRefGoogle ScholarPubMed
Cavalcanti, E.A.H., Neumann-Leitão, S. and Vieira, D.A.N. (2008) Mesozooplâncton do sistema estuarino de Barra das Jangadas, Pernambuco, Brasil. Revista Brasileira de Zoologia 25, 436444.CrossRefGoogle Scholar
Clarke, K.R. and Warwick, R.M. (1994) Changes in marine communities, an approach to statistical analysis and interpretation. Plymouth: NERC, 187 pp.Google Scholar
Clarke, K.R. and Gorley, R.N. (2006) Primer v6: user manual/tutorial. Plymouth: NERC, 190 pp.Google Scholar
Clarke, K.R., Chapman, M.G., Somerfield, P.J. and Needham, H.R. (2006) Dispersion-based weighting of species counts in assemblage analyses. Marine Ecology Progress Series 320, 1127.CrossRefGoogle Scholar
Clarke, K.R. (1993) Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18, 117143.CrossRefGoogle Scholar
Colijn, F. and Dijkema, K.S. (1981) Species composition of benthic diatoms and distribution of chlorophyll a on an intertidal flat in the Dutch Wadden Sea. Marine Ecology Progress Series 4, 921.CrossRefGoogle Scholar
CPRH (2006) Relatório de monitoramento de bacias hidrográficas do Estado de Pernambuco—2005. Recife: CPRH, 90 pp.Google Scholar
Dauer, D.M. (1993) Biological criteria, environmental health and estuarine macrobenthic community structure. Marine Pollution Bulletin 26, 249257.CrossRefGoogle Scholar
Dauwe, B., Herman, P.M.J. and Heip, C.H.R. (1998) Community structure and bioturbation potential of macrofauna at four North Sea stations with contrasting food supply. Marine Ecology Progress Series 173, 6783.CrossRefGoogle Scholar
Dittmann, S. (2001) Abundance and distribution of small infauna in mangroves of Missionary Bay, North Queensland, Australia. Revista de Biología Tropical 49, 535544.Google ScholarPubMed
Eleftheriou, A. and Holme, N.A. (1984) Macrofauna techniques. In Holme, N.A. and McIntyre, A.D. (eds) Methods for the study of marine benthos. 2nd edition. Oxford: Blackwell, pp. 140216.Google Scholar
Elliott, M. and Quintino, V. (2007) The estuarine quality paradox, environmental homeostasis and the difficulty of detecting anthropogenic stress in naturally stressed areas. Marine Pollution Bulletin 54, 640645.CrossRefGoogle ScholarPubMed
EMBRAPA (1997) Manual de métodos de análise de solo. 2nd edition.Rio de Janeiro: Centro Nacional de Pesquisas de Solos, 212 pp.Google Scholar
Fernandes, M.B., Sicre, M.-A., Cardoso, J.N. and Macêdo, S.J. (1999) Sedimentary 4-desmethyl sterols and n-alkanols in an eutrophic urban estuary, Capibaribe River, Brazil. The Science of the Total Environment 231, 116.CrossRefGoogle Scholar
Ferraro, S.P. and Cole, F.A. (1990) Taxonomic level and sample size sufficient for assessing pollution impacts on the Southern California Bight macrobenthos. Marine Ecology Progress Series 67, 251262.CrossRefGoogle Scholar
Ferraro, S.P., Swartz, R.C., Cole, F.A. and Deben, W.A. (1994) Optimum macrobenthic sampling protocol for detecting pollution impacts in the Southern California Bight. Environmental Monitoring and Assessment 29, 127153.CrossRefGoogle ScholarPubMed
Ferraro, S.P., Cole, F.A. and Olsen, A.R. (2006) A more cost-effective EMAP benthic macrofaunal sampling protocol. Environmental Monitoring and Assessment 116, 257290.CrossRefGoogle ScholarPubMed
Flach, E. and Heip, C. (1996) Vertical distribution of macrozoobenthos within the sediment on the continental slope of the Goban Spur area (NE Atlantic). Marine Ecology Progress Series 141, 5566.CrossRefGoogle Scholar
Flach, E., Heip, C. and Sandee, A. (1998) Macrobenthic community structure in relation to sediment composition at the Iberian Margin. OMEX II-I, 1st Annual Report, 10 pp.Google Scholar
Florêncio, M.A.P. (2000) Dinâmica populacional e produção secundária de Laeonereis acuta (Treadwell, 1923) na praia de Enseada dos Corais—Cabo de Santo Agostinho—Pernambuco—Brasil. Mestrado em Biologia Animal. Universidade Federal de Pernambuco, Brasil.Google Scholar
Frouin, P. (2000) Effects of anthropogenic disturbances of tropical soft-bottom benthic communities. Marine Ecology Progress Series 194, 3953.CrossRefGoogle Scholar
Gage, J.D., Hughes, D.J. and Vecino, J.L.G. (2002) Sieve size influence in estimating biomass, abundance and diversity in samples of deep-sea macrobenthos. Marine Ecology Progress Series 225, 97107.CrossRefGoogle Scholar
Grasshoff, K., Ehrhardt, M. and Kremling, K. (1983) Methods of seawater analysis. 2nd edition.New York: Verlag Chemie, 419 pp.Google Scholar
Grego, C.K.S., Feitosa, F.A.N., Silva, M.H. and Flores-Montes, M.J. (2004) Distribuição espacial e sazonal da clorofila a fitoplanctônica e hidrologia do estuário do Rio Timbó (Paulista-PE). Tropical Oceanography 32, 181199.CrossRefGoogle Scholar
Gruenert, U., Carr, G. and Morin, A. (2007) Reducing the cost of benthic sample processing by using sieve retention probability models. Hydrobiologia 589, 7990.CrossRefGoogle Scholar
Gutiérrez, D., Gallardo, V.A., Mayor, S., Neira, C., Vásquez, C., Sellanes, J., Rivas, M., Soto, A., Carrasco, F. and Baltazar, M. (2000) Effects of dissolved oxygen and fresh organic matter on the bioturbation potential of macrofauna in sublittoral sediments off Central Chile during the 1997/1998 El Niño. Marine Ecology Progress Series 202, 8199.CrossRefGoogle Scholar
Ingole, B.S., Ansari, Z.A., Rathod, V. and Rodrigues, N. (1999) Response of deep-sea macrobenthos to a small-scale environmental disturbance. In The Proceedings of the Third ISOPE Ocean Mining Symposium (Reports), Goa, India, pp. 191197.Google Scholar
Ingole, B., Rodrigues, B. and Ansari, Z.A. (2002) Macrobenthic communities of the coastal waters of Dabhol, west coast of India. Indian Journal of Marine Sciences 31, 9399.Google Scholar
James, R.J., Lincoln-Smith, M.P. and Fairweather, P.G. (1995) Sieve mesh-size and taxonomic resolution needed to describe natural spatial variation of marine macrofauna. Marine Ecology Progress Series 118, 187198.CrossRefGoogle Scholar
Jayaraj, K.A., Sheeba, P., Jacob, J., Revichandran, C., Arun, P.K., Praseeda, K.S., Nisha, P.A. and Rasheed, K.A. (2008) Response of infaunal macrobenthos to the sediment granulometry in a tropical continental margin—southwest coast of India. Estuarine, Coastal and Shelf Science 77, 743754.CrossRefGoogle Scholar
Koening, M.L., Eskinazi-Leça, E., Neumann-Leitão, S. and Macêdo, S.J. (2002) Impactos da construção do Porto de Suape sobre a comunidade fitoplanctônica no estuário do rio Ipojuca (Pernambuco-Brasil). Acta Botanica Brasilica 16, 407420.CrossRefGoogle Scholar
Lampadariou, N., Karakassis, I. and Pearson, T.H. (2005) Cost/benefit analysis of a benthic monitoring programme of organic benthic enrichment using different sampling and analysis methods. Marine Pollution Bulletin 50, 16061618.CrossRefGoogle ScholarPubMed
Lampadariou, N., Akoumianaki, I. and Karakassis, I. (2008) Use of the size fractionation of the macrobenthic biomass for the rapid assessment of benthic organic enrichment. Ecological Indicators 8, 729742.CrossRefGoogle Scholar
Littlepage, J.L. (1998) Oceanografia—Manual de técnicas oceanográficas para trabalhos em laboratório e a bordo. Fortaleza: UFC Edições, 99 pp.Google Scholar
Lorenzen, C.J. (1967) Determination of chlorophyll and phaeopigments: spectrophotometric equations. Limnology and Oceanography 12, 343346.CrossRefGoogle Scholar
Magurran, A.E. (2004) Measuring biological diversity. Oxford: Blackwell Science, 256 pp.Google Scholar
Mahadevan, S. and Patton, G.W. (1979) A study of sieve (screen mesh-opening) size effects on benthic fauna collected from Anclote anchorage. Environmental Protection Agency contract #68-01-5016. Mote Marine Laboratory Technical Report 11, 28 pp.Google Scholar
Mannino, A. and Montagna, P.A. (1997) Small-scale spatial variation of macrobenthic community structure. Estuaries 20, 159173.CrossRefGoogle Scholar
Maurer, D. and Vargas, J.A. (1984) Diversity of soft-bottom benthos in a tropical estuary: Gulf of Nicoya, Costa Rica. Marine Biology 81, 97106.CrossRefGoogle Scholar
Medeiros, T.N. (2005) Uso comparativo de atrator luminoso e rede de arrasto na captura de larvas de peixes no estuário do rio Formoso–Pernambuco–Brasil. Mestrado em Recursos Pesqueiros e Aqüicultura. Universidade Federal Rural de Pernambuco, Brasil, 47 pp.Google Scholar
Mendonça, I.V.S. and Almeida-Cortez, J.S. (2007) Caracterização da galha induzida por ácaro em Laguncularia racemosa (L.) Gaertn (Combretaceae). Biota Neotropica 7, 163170.CrossRefGoogle Scholar
Monteiro, J.J.F., Leça, E.E., Koening, M.L. and Macedo, S.J. (2010) New record of Trichodesmium thiebautii Gomont ex Gomont (Oscillatoriales–Cyanophyta) for the continental shelf of northeastern Brazil. Acta Botanica Basilica 24, 11041106.CrossRefGoogle Scholar
Murolo, P.P.A., Carvalho, P.V.V.C., Botter-Carvalho, M.L., Souza-Santos, L.P. and Santos, P.J.P. (2006) Spatio-temporal variations of microphytobenthos in the Botafogo and Siri estuaries (Northeast–Brazil). Brazilian Journal of Oceanography 54, 1930.CrossRefGoogle Scholar
Nalesso, R.C., Joyeux, J.-C., Quintana, C.O., Torezani, E. and Otegui, A.C.P. (2005) Soft-bottom macrobenthic communities of the Vitória Bay Estuarine System, south-eastern Brazil. Brazilian Journal of Oceanography 53, 2338.CrossRefGoogle Scholar
Noronha, T.J.M. (2008) Avaliação das concentrações de metais pesados em sedimentos do estuário do rio Timbó, Pernambuco–Brasil. Mestrado em Tecnologia Ambiental. Instituto de Tecnologia de Pernambuco, Brasil, 110 pp.Google Scholar
Pagliosa, P.R. and Barbosa, F.A.R. (2006) Assessing the environment–benthic fauna coupling in protected and urban areas of southern Brazil. Biological Conservation 129, 408417.CrossRefGoogle Scholar
Paiva, P.C. (2001) Spatial and temporal variation of a nearshore benthic community in southern Brazil: implications for the design of Monitoring Programs. Estuarine, Coastal and Shelf Science 52, 423433.CrossRefGoogle Scholar
Ricciardi, A. and Bourget, E. (1999) Global patterns of macroinvertebrate biomass in marine intertidal communities. Marine Ecology Progress Series 185, 2135.CrossRefGoogle Scholar
Rodrigues, A.M., Meireles, S., Pereira, T. and Quintino, V. (2007) Spatial heterogeneity recognition in estuarine intertidal benthic macrofaunal communities: influence of sieve mesh-size and sampling depth. Hydrobiologia 587, 3750.CrossRefGoogle Scholar
Rosa-Filho, J.S.R., Busman, D.V., Viana, A.P., Gregório, A.M. and Oliveira, D.M. (2006) Macrofauna bentônica de zonas entre-marés não vegetadas do estuário do rio Caeté, Bragança, Pará. Boletim do Museu Paraense Emílio Goeldi. Série Ciências Naturais 1, 8596.CrossRefGoogle Scholar
Santos, M.A.C. and Coelho, P.A. (2001) Crustacea Decapoda of the Paripe river estuary, Pernambuco, Brazil. Hydrobiologia 449, 7779.CrossRefGoogle Scholar
Schaffner, L.C. (1990) Small-scale organism distributions and patterns of species diversity: evidence for positive interactions in an estuarine benthic community. Marine Ecology Progress Series 61, 107117.CrossRefGoogle Scholar
Schlacher, T.A. and Wooldridge, T.H. (1996a) How accurately can retention of benthic macrofauna by a particular mesh size be predicted from body size of organisms? Hydrobiologia 323, 149154.CrossRefGoogle Scholar
Schlacher, T.A. and Wooldridge, T.H. (1996b) How sieve mesh size affects sample estimates of estuarine benthic macrofauna. Journal of Experimental Marine Biology and Ecology 201, 159171.CrossRefGoogle Scholar
Silva, A.P., Neumann-Leitão, S., Schwamborn, R., Gusmão, L.M.O. and Silva, T.A. (2004) Mesozooplankton of an impacted bay in North Eastern Brazil. Brazilian Archives of Biology and Technology 47, 485493.CrossRefGoogle Scholar
Sokal, R.R. and Rohlf, F. (1997) Biometry: the principles and practice of statistics in biological research. 3rd edition. New York: W.H. Freeman and Co., 887 pp.Google Scholar
Sommerfield, P.J., Fonsêca-Genevois, V.G., Rodrigues, A.C.I., Castro, F.J.V. and Santos, G.A.P. (2003) Factors affecting meiofaunal community structure in the Pina Basin, an urbanized embayment on the coast of Pernambuco, Brazil. Journal of the Marine Biological Association of the United Kingdom 83, 12091213.CrossRefGoogle Scholar
Souza, A.D.G. and Tundisi, J.G. (2003) Water quality in watershed of the Jaboatão river (Pernambuco, Brazil): a case study. Brazilian Archives of Biology and Technology 46, 711721.CrossRefGoogle Scholar
Suguio, K. (1973) Introdução à sedimentologia. São Paulo: Edgard Blücher, 318 pp.Google Scholar
Tanaka, M.O. and Leite, F.P.P. (1998) The effect of sieve mesh size on the abundance and composition of macrophyte-associated macrofaunal assemblages. Hydrobiologia 389, 2128.CrossRefGoogle Scholar
Teixeira, H., Salas, F., Pardal, M.A. and Marques, J.C. (2007) Applicability of ecological evaluation tools in estuarine ecosystems: the case of the lower Mondego estuary (Portugal). Hydrobiologia 587, 101112.CrossRefGoogle Scholar
Thompson, B.W., Riddle, M.J. and Stark, J.S. (2003) Cost-efficient methods for marine pollution monitoring at Casey Station, East Antarctica: the choice of sieve mesh-size and taxonomic resolution. Marine Pollution Bulletin 46, 232243.CrossRefGoogle ScholarPubMed
Valença, A.P.M.C. and Santos, P.J.P. (2012) Macrobenthic community for assessment of estuarine health in tropical areas (Northeast, Brazil): review of macrofauna classification in ecological groups and application of AZTI Marine Biotic Index. Marine Pollution Bulletin 64, 18091820.CrossRefGoogle ScholarPubMed
Warwick, R.M. (1986) A new method for detecting pollution effects on marine macrobenthic communities. Marine Biology 92, 557562.CrossRefGoogle Scholar
Wei, C.L. (2006) The bathymetric zonation and community structure of deep-sea macrobenthos in the northern Gulf of Mexico. MSc thesis. Texas A & M University, USA, 90 pp.Google Scholar
Weston, D.P. (1990) Quantitative examination of macrobenthic community changes along an organic enrichment gradient. Marine Ecology Progress Series 61, 233244.CrossRefGoogle Scholar
Wetzel, R.G. and Likens, G.E. (1990) Limnological analyses. 2nd edition.New York: Springer, 338 pp.Google Scholar