Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T01:54:06.033Z Has data issue: false hasContentIssue false

Functional morphology of the coelomocytes of the larval oysters (Crassostrea virginica and Crassostrea gigas)

Published online by Cambridge University Press:  11 May 2009

Ralph Elston
Affiliation:
Department of Avian and Aquatic Animal Medicine, New York State College of Veterinary Medicine, Cornell University, Ithaca, New York 14853

Extract

The functional morphology of the coelomocytes of larval oysters, Crassostrea virginica and C. gigas, based on observations of live animals and histological and ultrastructural examination of tissues, is presented. Two predominant types of coelomocytes were found in the larval oysters. One, the SER cell, not found in the adult oyster, is large with a spheroidal nucleus, and exhibits basophilic cytoplasm which consists of abundant smooth endoplastic reticulum. This cell appears to participate in metabolic conversion processes. The other predominant cell type, the phagocyte, appears identical to the phagocyte observed in the adult oyster. Both differential cell types were observed from one day post fertilization to metamorphosis, the oldest stage studied.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bang, B. G. & Bang, F. B., 1974. Invertebrate model for study of macromolecular regulators of mucus secretion. Lancet, no. 7891, 12921294.CrossRefGoogle ScholarPubMed
Beklemishev, W. N., 1964. Principles of Comparative Anatomy of Invertebrates, Volume 2. Organology, 3rd edition (ed. Kabota, Z.). Aberdeen: Aberdeen University Press. [Translated from the Russian.]Google Scholar
Bloom, W. & Fawcett, D. W., 1975. A Textbook of Histology, 10th edition. 1033 pp. Philadelphia, London & Toronto: W. B. Saunders & Co.Google Scholar
Cantacuzene, J., 1928. Recherches sur les reactions d'immunité chez les invertebrates; reactions d'immunite chez Sipunculus midus. Archives roumaines de pathologie experimental et de microbiologie, 1, 7.Google Scholar
Cheng, T. C., 1975. Functional morphology and biochemistry of molluscan phagocytes. Annals of the New York Academy of Sciences, 266, 343–379.CrossRefGoogle ScholarPubMed
Cloney, R. A., 1972. Cytoplasmic filaments and morphogenesis: effects of cytochalasin B on contractile epidermal cells. Zeitschrift für Zellforschung und mikroskopische Anatomie, 132, 167192.CrossRefGoogle ScholarPubMed
Elston, R., 1978. Virus-like particles associated with lesions in larval Pacific oysters (Crassostrea gigas). Journal of Invertebrate Pathology, 33, 7174.CrossRefGoogle Scholar
Elston, R., 1980 a. Functional anatomy, histology, and ultrastructure of larval American oysters, Crassostrea virginica. Proceedings. National Shellfisheries Association. (In the Press).Google Scholar
Elston, R., 1980 b Ultrastructural aspects of a serious disease of hatchery reared larval oysters, Crassostrea gigas. Journal of Fish Diseases, 3, 110.CrossRefGoogle Scholar
Erdmann, W., 1935. Untersuchungen über die Lebensgeschichte der Auster. Nr 5. Über die Entwicklung und die Anatomie der ansatzreifen Larve von Ostrea edulis mit Bermerkungen über die Lebensgeschichte der Auster. Wissenschaftliche Meeresuntersuchungen (Abteilung Helgoland), 19(3), Abhandlung Nr 6, 24 pp.Google Scholar
Foley, D. A. & Cheng, T. C., 1972. Interaction of the molluscs and foreign substances: the morphology and behavior of hemolymph cells of the American oyster, Crassostrea virginica, in vitro. Journal of Invertebrate Pathology, 19, 383394.CrossRefGoogle Scholar
Foley, D. A. & Cheng, T. C., 1975. A quantitative study of phagocytosis by hemolymph cells of the pelecypods, Crassostrea virginica and Mercenaria mercenaria. Journal of Invertebrate Pathology, 25, 189197.CrossRefGoogle ScholarPubMed
Galtsoff, P., 1964. The American oyster, Crassostrea virginica Gmelin. Fishery Bulletin. Fish and Wildlife Service. United States Department of the Interior, 64, 480 pp.Google Scholar
Leibovitz, L., Elston, R., Lipovsky, V. & Donaldson, J., 1978. A serious disease of larval Pacific oysters (Crassostrea gigas). In Proceedings of the Ninth Annual Meeting of the World Mariculture Society (ed. Avault, J. W. Jr), pp. 603615. Baton Rouge, Louisiana: Louisiana State University, Division of Continuing Medicine.Google Scholar
Luft, J. H., 1976. The structure and properties of the cell surface coat. International Review of Cytology, 45, 291382.CrossRefGoogle ScholarPubMed
Mix, M., 1976. A general model for leukocyte cell renewal in bivalve mollusks. Marine Fisheries Review, 38, 3641.Google Scholar
Mix, M. & Tomasovic, S. P., 1973. The use of high specific activity tritiated thymidine and auto-radiography for studying molluscan cells. Journal of Invertebrate Pathology, 21, 318320.CrossRefGoogle Scholar
Prendergast, R. A., Cole, G. A. & Henney, C. S., 1974. Marine invertebrate origin of a reactant to mammalian T cells. Annals of the New York Academy of Sciences, 234, 717.CrossRefGoogle ScholarPubMed
Ruddell, C. K., 1971 a. The fine structure of oyster agranular amebocytes from regenerating mantle wounds in the Pacific oyster, Crassostrea gigas. Journal of Invertebrate Pathology, 18, 260268.CrossRefGoogle ScholarPubMed
Ruddell, C. L., 1971 b. Elucidation of the nature and function of the granular oyster amebocytes through histochemical studies of normal and traumatized oyster tissues. Histochemie, 26, 98112.CrossRefGoogle ScholarPubMed
Yonge, C. M., 1926. Structure and physiology of the organs of feeding and digestion in Ostrea edulis. Journal of the Marine Biological Association of the United Kingdom, 14, 295386.CrossRefGoogle Scholar