Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T09:12:29.278Z Has data issue: false hasContentIssue false

Fecundity and effects of bopyrid infestation on egg production in the Caribbean sponge-dwelling snapping shrimp Synalpheus yano (Decapoda: Alpheidae)

Published online by Cambridge University Press:  03 November 2009

Patricio Hernáez
Affiliation:
Unidad de Investigación Pesquera y Acuicultura (UNIP), Centro de Investigaciones en Ciencias del Mar y Limnología, Universidad de Costa Rica (CIMAR) Museo del Mar, Universidad Arturo Prat, Casilla 121, Iquique, Chile
Betel Martínez-Guerrero
Affiliation:
Laboratorio de Sistemática de Invertebrados Marinos (LABSIM), Universidad del Mar, Campus Puerto Ángel, Puerto Ángel, Oaxaca CP 70902, México
Arthur Anker
Affiliation:
Dickinson Hall, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611-7800, USA
Ingo S. Wehrtmann*
Affiliation:
Unidad de Investigación Pesquera y Acuicultura (UNIP), Centro de Investigaciones en Ciencias del Mar y Limnología, Universidad de Costa Rica (CIMAR) Escuela de Biología, Universidad de Costa Rica, 2060 San José, Costa Rica
*
Correspondence should be addressed to: Ingo S. Wehrtmann, Escuela de Biología, Universidad de Costa Rica, 2060 San José, Costa Rica email: ingowehrtmann@gmx.de

Abstract

Several Synalpheus species have been reported as hosts of bopyrid parasites; however, the impact of infestation on egg production is still unknown. Therefore, the present work studied reproductive aspects and the effect of parasitism on fecundity of the alpheid shrimp Synalpheus yano from Bocas del Toro, Caribbean coast of Panama. Un-infested females (N = 84) ranging from 3.7 to 9.6 mm carapace length, produced between 5 and 246 eggs (average: 98±64.6), and egg number increased significantly with female size. The eggs were relatively large (0.6–1.3 mm in diameter), but within the range of other Synalpheus species, and egg size did not differ significantly between un-infested and infested females. Despite these large eggs, the morphological characteristics of hatching larvae indicate a planktotrophic development. During the incubation period, the egg volume increased from 0.100 to 0.218 mm3, representing an overall increase of 118%. A total of 18 females (16% of all ovigerous individuals) were infested, and the occurrence of parasitic infestation was more pronounced in larger females. Infested females ranging from 4.6 to 9.4 mm carapace length, produced between 22 and 166 eggs (average: 81±44.4). Egg-bearing females infested by parasitic bopyrids carried on average 41% fewer eggs than similar-sized females without parasites. The co-occurrence of parasites and developing eggs, however, indicates that the bopyrid parasite does not necessarily castrate its host. Therefore, we encourage more comparative intraspecific studies on egg production in infested and un-infested females to assess the impact of infestation on fecundity in caridean shrimp.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albornoz, L. and Wehrtmann, I.S. (1997) Descripción y clave de los primeros estadíos larvales de camarones carídeos (Decapoda: Hippolytidae, Alpheidae, Rhynchocinetidae) de aguas costeras de Chile. Investigaciones Marinas, Valparaíso 25, 121133.Google Scholar
Anker, A. (2007) Pseudalpheopsis guana gen. nov., sp. nov. (Crustacea: Decapoda), a new alpheid shrimp from the British Virgin Islands, Caribbean Sea. Zoological Studies 46, 428440.Google Scholar
Anker, A. and De Grave, S. (2008) Zuzalpheus Ríos and Duffy, 2007: a junior synonym of Synalpheus Bate, 1888 (Decapoda: Alpheidae). Journal of Crustacean Biology 28, 735740.CrossRefGoogle Scholar
Anker, A. and Felder, D.L. (2005) Description of Coutieralpheus setirostris, new genus, new species, an infaunal alpheid shrimp (Crustacea, Decapoda) from Florida, U.S.A. Crustacean Research 34, 4052.Google Scholar
Anker, A. and Iliffe, T.M. (2000) Description of Bermudacaris harti, a new genus and species (Crustacea: Decapoda: Alpheidae) from anchialine caves of Bermuda. Proceedings of the Biological Society of Washington 113, 761775.Google Scholar
Anker, A. and Tóth, E. (2008) A preliminary revision of the Synalpheus paraneptunus Coutière, 1909 species complex (Crustacea: Decapoda: Alpheidae). Zootaxa 1915, 128.CrossRefGoogle Scholar
Anker, A., Hurt, C. and Knowlton, N. (2007) Revision of the Alpheus nuttingi (Schmitt) species complex (Crustacea: Decapoda: Alpheidae), with description of a new species from the tropical eastern Pacific. Zootaxa 1577, 4170.CrossRefGoogle Scholar
Anker, A., Hurt, C. and Knowlton, N. (2008) Revision of the Alpheus formosus Gibbes, 1850 complex, with redescription of A. formosus and description of a new species from the tropical western Atlantic (Crustacea: Decapoda: Alpheidae). Zootaxa 1707, 122.Google Scholar
Beck, J.T. (1980) The effect of an isopod castrator, Probopyrus pandalicola, on the sex characters of one of its caridean shrimp hosts, Palaemonetes paludosus. Biological Bulletin. Marine Biological Laboratory, Woods Hole 158, 115.CrossRefGoogle Scholar
Bliss, D.E. (1982) Shrimps, lobsters and crabs, their fascinating life story. New York: Columbia University Press.Google Scholar
Brockerhoff, A.M. (2004) Occurrence of the internal parasite Portunion sp. (Isopoda: Entoniscidae) and its effect on reproduction in intertidal crabs (Decapoda: Grapsidae) from New Zealand. Journal of Parasitology 90, 13381344.Google Scholar
Brooks, W.K. and Herrick, F.H. (1892) The embryology and metamorphosis of the Macroura. Memorial National Academy of Sciences 5, 321576.Google Scholar
Calado, R., Bartilotti, C. and Narciso, L. (2005) Short report on the effect of a parasitic isopod on the reproductive performance of a shrimp. Journal of Experimental Marine Biology and Ecology 321, 1318.Google Scholar
Clarke, A., Hopkins, C.C. and Nilssen, E.M. (1991) Egg size and reproductive output in the deep water prawn Pandalus borealis Krøyer, 1838. Functional Ecology 5, 724730.Google Scholar
Corey, S. and Reid, D.M. (1991) Comparative fecundity of decapod crustaceans. The fecundity of thirty three species of nine families of caridean shrimps. Crustaceana 60, 270294.Google Scholar
Coutière, H. (1898) Sur quelques variétés de Synalpheus laevimanus Heller (Crust.). Bulletin de la Société Entomologique de France 1898, 188191.CrossRefGoogle Scholar
Coutière, H. (1909) The American species of snapping shrimps of the genus Synalpheus. Proceedings of the United States National Museum 36, 193.Google Scholar
Dardeau, M.R. (1984) Synalpheus shrimps (Crustacea: Decapoda: Alpheidae). I. The Gambarelloides group, with a description of a new species. Memoirs of the Hourglass Cruises 8, 1125.Google Scholar
Dobkin, S.R. (1965) The first post-embryonic stage of Synalpheus brooksi Coutière. Bulletin of Marine Science 15, 450462.Google Scholar
Dobkin, S.R. (1969) Abbreviated larval development in caridean shrimps and its significance in the artificial culture of these animals. FAO Fisheries Reports 57, 12 pp.Google Scholar
Duffy, J.E. (1996) Eusociality in a coral-reef shrimp. Nature 381, 512514.Google Scholar
Duffy, J.E. (1998) On the frequency of eusociality in snapping shrimps (Decapoda: Alpheidae), with description of a second eusocial species. Bulletin of Marine Science 63, 387400.Google Scholar
Duffy, J.E. (2003) The ecology and evolution of eusociality in sponge-dwelling shrimp. In Kikuchi, (ed.) Genes, behavior, and evolution in social insects. Sapporo, Japan: University of Hokkaiko Press, pp. 138.Google Scholar
Duffy, J.E. (2007) Ecology and evolution of eusociality in sponge-dwelling shrimp. In Duffy, J.E. and Thiel, M. (eds) Evolution of social and sexual systems—crustaceans as model systems. Oxford: Oxford University Press, pp. 386408.Google Scholar
Duffy, J.E. and Macdonald, K.S. (1999) Colony structure of the social snapping shrimp, Synalpheus filidigitus, in Belize. Journal of Crustacean Biology 19, 283292.Google Scholar
Duffy, J.E., Morrison, C.L. and Ríos, R. (2000) Multiple origins of eusociality among sponge-dwelling shrimps (Synalpheus). Evolution 54, 503516.Google Scholar
Duffy, J.E., Morrison, C.L. and Macdonald, K.S. (2002) Colony defense and behavioral differentiation in the eusocial shrimp Synalpheus regalis. Behavioral Ecology and Sociobiology 51, 488495.Google Scholar
Felder, D.L. (1982) Reproduction of the snapping shrimps Synalpheus fritzmuelleri and S. apioceros (Crustacea: Decapoda: Alpheidae) on a sublittoral reef off Texas. Journal of Crustacean Biology 2, 535543.Google Scholar
González, M.T. and Acuña, E. (2004) Infestation by Pseudione humboldtensis (Bopyridae) in the squat lobsters Cervimunida johni and Pleuroncodes monodon (Galatheidae) off northern Chile. Journal of Crustacean Biology 24, 618624.Google Scholar
Hermoso-Salazar, A.M. and Hendrickx, M.E. (2005) New records for Synalpheus peruvianus Rathbun, 1910 (Decapoda, Caridea, Alpheidae) in the East Pacific. Crustaceana 78, 763765.Google Scholar
Hernáez, P. and Palma, S. (2003) Fecundidad, volumen del huevo y rendimiento reproductivo de cinco especies de porcelánidos intermareales del norte de Chile (Decapoda, Porcellanidae). Investigaciones Marinas, Valparaíso 31, 3546.Google Scholar
Hernáez, P., Palma, S. and Wehrtmann, I.S. (2008) Egg production of the burrowing shrimp Callichirus seilacheri (Bott 1955) (Decapoda, Callianassidae) in northern Chile. Helgoland Marine Research 62, 351356.Google Scholar
Hines, A.H. (1982) Allometric constraints and variables of reproductive effort in brachyuran crabs. Marine Biology 69, 309320.Google Scholar
Hines, A.H. (1991) Fecundity and reproductive output in nine species of Cancer crabs (Crustacea, Brachyura, Candridae). Canadian Journal of Fisheries and Aquatic Sciences 48, 267275.CrossRefGoogle Scholar
Hines, A.H. (1992) Constraint on reproductive output in brachyuran crabs: pinnotherids test the rule. American Zoologist 32, 503511.Google Scholar
Hurt, C., Anker, A. and Knowlton, N. (2009) A multilocus test of simultaneous divergence across the Isthmus of Panama using snapping shrimp in the genus Alpheus. Evolution 63, 514530.Google Scholar
Kobayashi, S. and Matsuura, S. (1995) Egg development and variation of egg size in the Japanese Mitten Crab Eriocheir japonicus (de Haan). Benthos Research 48, 2939.Google Scholar
Kuris, A. (1991) A review of patterns and causes of crustacean brood mortality. In Schram, F.R. (ed.) Crustacean issues, Volume VII: Egg production in Crustacean. Rotterdam: Balkema, pp. 117141.Google Scholar
Lardies, M.A. and Wehrtmann, I.S. (1997) Egg production in Betaeus emarginatus (H. Milne-Edwards, 1837) (Decapoda: Alpheidae): fecundity, reproductive output and chemical composition of eggs. Ophelia 46, 165174.CrossRefGoogle Scholar
Lardies, M.A. and Wehrtmann, I.S. (2001) Latitudinal variation in the reproductive biology of Betaeus truncatus (Decapoda: Alpheidae) along the Chilean coast. Ophelia 55, 5567.CrossRefGoogle Scholar
Markham, J.C. (1985) A review of the bopyrid isopods infesting caridean shrimps in the northwestern Atlantic Ocean, with special reference to those collected during the Hourglass cruises in the Gulf of Mexico. Memoirs of the Hourglass Cruises 7, 1155.Google Scholar
Markham, J.C. (1986) Evolution and zoogeography of the Isopoda Bopyridae, parasites of Crustacea Decapoda. In Gore, R.H. and Heck, K.L. (eds) Crustacean issues. Volume IV: Crustacean biogeography. Rotterdam: Balkema, pp. 143164.Google Scholar
Mathews, L.M. (2006) Cryptic biodiversity and phylogeographical patterns in a snapping shrimp species complex. Molecular Ecology 15, 40494063.CrossRefGoogle Scholar
Mathews, L.M. and Anker, A. (2009) Molecular phylogeny reveals extensive ancient and ongoing radiations in a snapping shrimp species complex (Crustacea, Alpheidae, Alpheus armillatus). Molecular Phylogenetics and Evolution 50, 268281.CrossRefGoogle Scholar
Morrison, C.L., Ríos, R. and Duffy, J.E. (2004) Phylogenetic evidence for an ancient rapid radiation of Caribbean sponge-dwelling snapping shrimps (Synalpheus). Molecular Phylogenetics and Evolution 30, 563581.CrossRefGoogle ScholarPubMed
O'Brien, J. and van Wyk, P.M. (1985) Effects of crustacean parasitic castrators (epicaridean isopods and rizocephalan barnacles) on growth of crustacean hosts. In Wenner, A.M. (ed.) Crustacean issues. Volume III: Factors in adult growth. Rotterdam: Balkema, pp. 191218.Google Scholar
Pavanelli, C.A.M., Mossolin, E.C. and Mantelatto, F.L. (2008) Reproductive strategy of the snapping shrimp Alpheus armillatus H. Milne-Edwards, 1837 in the South Atlantic: fecundity, egg features, and reproductive output. Invertebrate Reproduction and Development 52, 123130.Google Scholar
Pavanelli, C.A.M., Mossolin, E.C. and Mantelatto, F.L. (in press) Maternal investment in egg production: environmental and population-specific effects on offspring performance in the snapping shrimp Alpheus nuttingi (Schmitt, 1924) (Decapoda, Alpheidae). Animal Biology 60.Google Scholar
Rahman, N., Dunham, D.W and Goving, C.K. (2004) Mate choice in the big-clawed snapping shrimp, Alpheus heterochaelis Say, 1818. Crustaceana 77, 95112.Google Scholar
Reinhard, E.G. (1956) Parasitological reviews: parasitic castration of Crustacea. Parasitology 5, 79107.Google Scholar
Ríos, R. and Duffy, J.E. (2007) A review of the sponge-dwelling snapping shrimp from Carrie Bow Cay, Belize, with description of Zuzalpheus, new genus, and six new species (Crustacea: Decapoda: Alpheidae). Zootaxa 1602, 189.CrossRefGoogle Scholar
Shields, J.D and Wood, F.E.I. (1993) Impact of parasites on the reproduction and fecundity of the blue sand crab Portunus pelagicus from Moreton Bay, Australia. Marine Ecology Progress Series 92, 159170.Google Scholar
Smith, A.E., Chapman, J.W. and Dumbauld, B.R. (2008) Population structure and energetics of the bopyrid isopod parasite Orthione griffenis in mud shrimp Upogebia pugettensis. Journal of Crustacean Biology 28, 228233.Google Scholar
Somers, K. (1991) Characterizing size-specific fecundity in crustaceans. In Schram, F.R. (ed.) Crustacean issues. Rotterdam: Balkema, pp. 357378.Google Scholar
Somerton, D. (1980) A computer technique for estimating the size of sexual maturity in crabs. Canadian Journal of Fisheries and Aquatic Sciences 37, 14881494.Google Scholar
Steele, D.H. and Steele, V.J. (1975) Egg size and duration of embryonic development in Crustacea. Internationale Revue der Gesamten Hydrobiologie 60, 711715.Google Scholar
Turner, R.L. and Lawrence, J.M. (1979) Volume and composition of echinoderm eggs: implications for the use of egg size in life history models. In Stancyk, S.E. (ed.) Reproductive ecology of marine invertebrates. Columbia, NY: The Belle W. Baruch Library of Marine Science, University of South Carolina Press, pp. 2540.Google Scholar
van Wyk, P.M. (1982) Inhibition of the growth and reproduction of the porcellanid crab Pachycheles rudis by the bopyrid isopod, Aporobopyrus muguensis. Parasitology 85, 459473.Google Scholar
Wehrtmann, I.S. (1990) Distribution and reproduction of Ambidexter panamense and Palaemonetes schmitti in Pacific Costa Rica (Crustacea, Decapoda). Revista de Biología Tropical 38, 327329.Google Scholar
Wehrtmann, I.S. and Albornoz, L. (2002) Evidence of different reproductive traits in the transisthmian sister species, Alpheus saxidomus and A. simus (Decapoda, Caridea, Alpheidae): description of the first postembryonic stage. Marine Biology 140, 605612.Google Scholar
Wehrtmann, I.S. and López, G.A. (2003) Effects of temperature on the embryonic development and hatchling size of Betaeus emarginatus (Decapoda, Caridea, Alpheidae). Journal of Natural History 37, 21652178.Google Scholar
Wenner, A.M., Fusaro, C. and Oaten, A. (1974) Size at onset of sexual maturity and growth rate in crustacean populations. Canadian Journal of Zoology 52, 10951106.Google Scholar
Williams, S.T., Knowlton, N., Weigt, L.A. and Jara, J.A. (2001) Evidence for three major clades within the snapping shrimp genus Alpheus inferred from nuclear and mitochondrial gene sequence data. Molecular Phylogenetics and Evolution 20, 375389.CrossRefGoogle ScholarPubMed
Zar, J.H. (1999) Biostatistical analysis. Upper Saddle River, NJ: Prentice-Hall, 663 pp.Google Scholar