Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T02:14:17.918Z Has data issue: false hasContentIssue false

Behaviour and cytology of Actinocoryne contractilis, nov. gen., nov. sp., a new stalked heliozoan (Centrohelidia): comparison with the other related genera

Published online by Cambridge University Press:  11 May 2009

Colette Febvre-Chevalier
Affiliation:
Laboratoire de Protistologie Marine Faculté des Sciences, Pare Valrose, 06034 Nice-Cedex, France and Station de Biologie Marine Villefranche-sur-Mer, 06230, Villefranche-sur-Mer, France

Extract

Actinocoryne contractilis is a new marine, benthic and stalked member of the Centrohelidia (Heliozoa) whose biology, motile behaviour and cytology are described. Preliminary results concerning the life cycle are given. The stalked form emits small subspherical planktonic heliozoans which settle and give rise to the stalked stage again.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, R. D. & Taylor, D. L., 1975. The molecular basis of amoeboid movement. In Molecules and Cell Movement, vol. 30 (ed. Inoue, S. and Stephens, R. E.), pp. 239258. New York: Raven Press.Google Scholar
Bardele, C. F., 1971. Microtubule model systems: cytoplasmic transport in the suctorian tentacle and the centrohelidian axopod. In 29th Annual Proceedings of Electron Microscope Society of America (ed. Arceneaux, C. J.), p. 334. Boston.Google Scholar
Bardele, C. F., 1972. Cell cycle, morphogenesis and ultrastructure in the pseudoheliozoan Clathrulina elegans. Zeitschrift fur Zellforschung und mikroscopische Anatomie, 130, 219242.CrossRefGoogle ScholarPubMed
Bardele, C. F., 1975. The fine structure of the centrohelidian heliozoan Heterophrys marina. Cell and Tissue Research, 161, 85102.CrossRefGoogle ScholarPubMed
Bardele, C. F., 1977. Evaluation of ultrastructural features in the classification of heliozoan actinopods. Fifth International Congress on Protozoology, New York, no. 75.Google Scholar
Bowers, B. & Korn, E. D., 1968. The fine structure of Acanthamoeba castellani. I. The trophozoite. Journal of Cell Biology, 39, 95111.CrossRefGoogle ScholarPubMed
Carosi, G., Scaglia, M., Filice, G. & Willaert, E., 1977. A comparative electron microscope study of axenically cultivated trophozoites of free-living amoebae of the genus Acanthamoeba and Naeghria with special reference to the species N. gruberi (Schardinger 1899), N. fowleri (Carter, 1970) and N. jadini (Willaert et Le Ray 1973). Archiv für Protistenkunde, 119, 264273.Google Scholar
Davidson, L. A., 1972. Ultrastructure of the heliozoan Heterophrys marina and of the helioflagellate Ciliophrys marina. Journal of Ultrastructure Research, 38, 219.Google Scholar
Davidson, L. A., 1973. The development and plasma membrane attachment sites of the haptocyst-like organelles of Heterophrys marina. Journal of Protozoology, 20, 506. [Abstract no. 41.]Google Scholar
Davidson, L. A., 1974. An outline of the evolution and origin of the actinopods. Journal of Protozoology, 21, 426. [Abstract no. 48.]Google Scholar
Davidson, L. A., 1976. Ultrastructure of the membrane attachment sites of the extrusomes of Ciliophrys marina and Heterophrys marina (Actinopoda). Cell and Tissue Research, 170, 353365.CrossRefGoogle ScholarPubMed
Dobell, C., 1917. On Oxnerella marina nov.gen. nov.sp. A new heliozoon and its method of division; with some remarks on the centroplast of the Heliozoa. Quarterly Journal of Microscopical Science, 62, 515538.Google Scholar
Edds, K. T., 1975. Motility in Echinosphaerium nucleofilum. II. Cytoplasmic contractility and its molecular basis. Journal of Cell Biology, 66, 156164.CrossRefGoogle ScholarPubMed
Fawcett, D. W., 1966. On the occurrence of a fibrous lamina on the inner aspect of the nuclear envelope in certain cells of vertebrates. American Journal of Anatomy, 119, 129.CrossRefGoogle ScholarPubMed
Febvre-Chevalier, C, 1972. Organisation ultrastructurale des axopodes chez un héliozoaire Centrohelidae nouveau. Journal of Protozoology, 19, 66. [Abstract no. 195.]Google Scholar
Febvre-Chevalier, C., 1973 a. Un nouveau type d'association des microtubules axopodiaux chez les héliozoaires. Protistologica, 9, 3543.Google Scholar
Febvre-Chevalier, C., 1973 b. Hedraiophrys hovassei, morphôlogie, biologie et cytologie. Protistologica, 9, 503520.Google Scholar
Febvre-Chevalier, C., 1975. Etude cytolôgique de Gymnosphaera albida Sassaki, 1894 (Héliozoaire Centrohélidié). Protistologica, 11, 331344.Google Scholar
Febvre-Chevalier, C., 1979. Essai préliminaire d'interprétation du mécanisme de la contractilité chez l'héliozoaire marin Actinolophus. Journal of Protozoology, 26, 60 A. [Abstract no. 175.]Google Scholar
Febvre-Chevalier, C. & Febvre, J., 1977 a. Motility in the marine heliozoan Actinolophus pedunculatus Schulze. A movie made with the technical assistance of the S.F.R.S. Fifth International Congress on Protozoology, New York, no. 329.Google Scholar
Febvre-Chevalier, C. & Febvre, J., 1977 b. Le mouvement chez l'héliozoaire marin Actinolophus pedunculatus Schulze. Biologie cellulaire, 29, 27a.Google Scholar
Febvre-Chevalier, C. & Febvre, J., 1978. Further observations on the motility of the marine heliozoan Actinolophus pedunculatus Schulze. A time lapse and high speed movie including preliminary physiological experiments. Journal of Protozoology, 25, 53 A. [Abstract no. 165.]Google Scholar
Grell, K. G., 1973. Protozoology. Berlin, Heidelberg, New York: Springer Verlag.CrossRefGoogle Scholar
Hausmann, K., 1978. Extrusive organelles in protists. In International Review of Cytology, vol. 52 (ed. Bourne, G. H. and Dianelli, J. F.), pp. 197268. New York, London: Academic Press.Google Scholar
Hovasse, R., 1965. Ultrastructure comparée des axopodes chez les héliozoaires des genres Actinosphaerium, Actinophrys et Raphidiophrys. Protistologica, 1, 8188.Google Scholar
Inoue, S., 1964. Organization and function of the mitotic spindle. In Primitive Motile Systems in Cell Biology (ed. Allen, R. D. and Kamiya, N.), pp. 549598. New York: Academic Press.CrossRefGoogle Scholar
Jones, W. C., 1975. The pattern of microtubules in the axonemes of Gymnosphaera albida Sassaki: evidence for 13 protofilaments. Journal of Cell Science, 18, 133156.CrossRefGoogle ScholarPubMed
Jones, W. C., 1976. The ultrastructure of Gymnosphaera albida Sassaki, a marine axopodiate protozoon. Philosophical Transactions of the Royal Society (B), 275, 349384.Google Scholar
Karnovsky, M. J., 1965. A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy. Journal of Cell Biology, 27, 137 A. [Abstract no. 270.]Google Scholar
Mcgee-Russell, S. M. & Trautwein, R., 1977. Low calcium trans-membrane inhibition of the fixation-induced contractility system of Allogromia. Ultrastructural correlates including cross-bridges. Fifth International Congress on Protozoology, New York, no. 60.Google Scholar
Marsland, D., Tilney, L. G. & Hirshfield, M., 1971. Stabilizing effects of D2O on the microtubular components and needle-like form of the heliozoan axopods: a pressure-temperature analysis. Journal of Cell Physiology, 77, 187194.CrossRefGoogle ScholarPubMed
Pickett-Heaps, J. D., 1969. The evolution of the mitotic apparatus. An attempt at comparative ultrastructural cytology in dividing plant cells. Cytobios, 1, 257280.Google Scholar
Pussard, M., Senaud, J. & Pons, R., 1977. Observations ultrastructurales sur Gocevia fonbrunei Pussard 1965 (Protozoa, Rhizopoda). Protistologica, 14, 557598.Google Scholar
Reiner, H., 1968. Heliozoa. In Die Tierwelt Deutschlands, vol. 56 (ed. Dahl, F.), pp. 3174. Jena: Fischer Verlag.Google Scholar
Schulze, F. E., 1874. Rhizopodienstudien. IV. Actinolophus pedunculatus nov.gen., nov.spec. Archiv für Mikroskopische Anatomie, 10, 392398.Google Scholar
Spurr, A., 1969. A low viscosity epoxy resin embedding medium for electron microscopy. Journal of Ultrastructure Research, 26, 3143.CrossRefGoogle ScholarPubMed
Suzaki, T., Shigenaka, S., Watanabe, S. & Toyohara, A., 1980. Food capture and ingestion in the large heliozoan Echinosphaerium nucleofilum. Journal of Cell Science, 42, 6179.CrossRefGoogle ScholarPubMed
Troyer, D., 1975. Possible involvement of the plasma membrane in saltatory particle movement in heliozoan axopods. Nature, London, 254, 696.CrossRefGoogle ScholarPubMed
Villeneuve, F., 1937. Sur la structure de Cienkovskyia mereschkovskyi Cienk. et d'Actinolophus pedunculatus Schulz., heliozoaires des eaux saumatres de Sète. Archives de zoologie expérimentale et générale, 78. Notes et revue, no. 23, 243250.Google Scholar
Vollet, J. J. & Roth, L. E., 1974. Cell fusion by nascent membrane induction and divalent cation treatment. Cytobiologie, 9 (3), 249262.Google Scholar
Willaert, E., Stevens, A. R. & Tyndall, R. L., 1978. Identification of Acanthamoeba culbertsoni from cultured tumor cells. Protistologica, 14, 319336.Google Scholar
Zuelzer, M., 1909. Bau und Entwicklung von Wagnerella borealis Mereshk. Archiv für Protistenkunde, 17, 136198.Google Scholar