Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T11:56:43.801Z Has data issue: false hasContentIssue false

Adaptations of two intertidal isopods I. Respiration and feeding in Naesa bidentata (Adams) (Sphaeromatidae)

Published online by Cambridge University Press:  11 May 2009

Wolfgang Wieser
Affiliation:
Zoologisches Institut der Universität, Vienna, Austria

Extract

In freshly collected Naesa bidentata there exists a clear dependence of respiration rate, measured in sea water, on the tidal cycle, with the maximum occurring at high tide, the minimum at low tide. In specimens that had spent 1–2 days in the laboratory the tidal rhythmicity is less pronounced due to a lowering of the Qo2-values at high tide and at the beginning of experiments. This is interpreted as reflecting differences in nutrition between freshly collected and laboratory specimens.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1962

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Borsuk, V. & Kreps, E., 1929. Untersuchungen über den respiratorischen Gaswechsel bei Balanus balanoides und Balanus crenatus bei verschiedenem Salzgehalt des Aussenmilieus. III. Pflüg. Arch. ges. Physiol., Bd. 222, pp. 371–80.CrossRefGoogle Scholar
Brown, F. A., Bennett, M. F. & Webb, H. M., 1954. Persistent daily and tidal rhythms of O2-consumption in fiddler crabs. J. cell. comp. Physiol., Vol. 44, pp. 477506.CrossRefGoogle ScholarPubMed
Crisp, D. J. & Southward, A. J. 1961. Different types of cirral activity of barnacles. Phil. Trans. B, Vol. 243, pp. 271308.Google Scholar
Enright, J. T., 1960. Discussion to article by Fingerman. In Cold Spr. Harb. Symp. quant. Biol., Vol. 25, pp. 487–8.Google Scholar
Fingerman, M. & Lago, A. D. 1957. Endogenous twenty-four hour rhythms of locomotor activity and oxygen consumption in the crawfish Orconectes clypeatus. Amer. Midi. Nat., Vol. 58, pp. 383–93.CrossRefGoogle Scholar
Hyde, M. B., 1938. Observations on Fucus serratus L. kept under laboratory conditions. J. Ecol., Vol. 26, pp. 316–27.CrossRefGoogle Scholar
Morton, J. E., Boney, A. D. & Corner, E. D. S., 1957. The adaptations of Lasaea rubra (Montagu) a small intertidal lamellibranch. J. mar. biol. Ass. U.K. Vol. 36, pp. 383405.CrossRefGoogle Scholar
Omer-Cooper, J. & Rawson, J. H., 1934. Notes on the British Sphaeromatidae (Crustacea, Isopoda). Rep. Dove mar. Lab., Ser. 3, No. 2, pp. 2258.Google Scholar
Rensing, L., 1961. Aktivitätsperiodik des Wasserläufers Velia currens F. Z. vergl. Physiol., Bd. 44, pp. 292322.CrossRefGoogle Scholar
Scholander, P. F., Claff, C. L., Andrews, J. R. & Wallach, D. F. 1952. Micro-volumetric respirometry. J. gen. Physiol., Vol. 35, pp. 375–95.CrossRefGoogle ScholarPubMed
Southward, A. J., 1958. The zonation of plants and animals on rocky sea shores. Biol. Rev., Vol. 33, pp. 137–77.CrossRefGoogle Scholar
Teal, J. M., 1959. Respiration of crabs in Georgia salt marshes and its relation to their ecology. Physiol. Zool., Vol. 32, pp. 114.CrossRefGoogle Scholar
Wieser, W., 1952. Investigations on the microfauna inhabiting seaweeds on rocky coasts. IV. J. mar. biol. Ass. U.K., Vol. 31, pp. 145–74.CrossRefGoogle Scholar
Wieser, W., 1962. Parameter des Sauerstoffverbrauches. I. Der Sauerstoffverbrauch einiger Landisopoden. Z. vergl. Physiol., Bd. 45, pp. 247–71.CrossRefGoogle Scholar
Wieser, W. & Kanwisher, J., 1959. Respiration and anaerobic survival in some sea weed-inhabiting invertebrates. Biol. Bull., Woods Hole, Vol. 117, pp. 594600.CrossRefGoogle Scholar
Zeuthen, E., 1947. Body size and metabolic rate in the animal kingdom, with special regard to the marine micro-fauna. C.R. Lab. Carlsberg, Ser. chim., Bd. 26, pp. 17161.Google Scholar