Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T02:11:56.488Z Has data issue: false hasContentIssue false

Predictors of Neuropsychological Improvement Following Cognitive Rehabilitation in Patients with Gliomas

Published online by Cambridge University Press:  21 December 2010

Karin Gehring*
Affiliation:
CoRPS, Faculty of Social and Behavioural Sciences, Tilburg University, The Netherlands
Neil K. Aaronson
Affiliation:
Division of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, The Netherlands Department of Clinical Psychology, University of Amsterdam, The Netherlands
Chad M. Gundy
Affiliation:
Division of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, The Netherlands
Martin J.B. Taphoorn
Affiliation:
Department of Neurology, Medical Center Haaglanden, The Hague, The Netherlands Department of Neurology, VU University Medical Center Amsterdam, The Netherlands
Margriet M. Sitskoorn
Affiliation:
CoRPS, Faculty of Social and Behavioural Sciences, Tilburg University, The Netherlands
*
Correspondence and reprint requests to: Karin Gehring, PhD, Tilburg University, Prisma Building; Room P 512, P.O. Box 90153, 5000 LE Tilburg, The Netherlands. E-mail: k.gehring@uvt.nl

Abstract

This study investigated the specific patient factors that predict responsiveness to a cognitive rehabilitation program. The program has previously been demonstrated to be successful at the group level in patients with gliomas, but it is unclear which patient characteristics optimized the effect of the intervention at the individual level. Four categories of possible predictors of improvement were selected for evaluation: sociodemographic and clinical variables, self-reported cognitive symptoms, and objective neuropsychological test performance. Hierarchical logistic regression analyses were conducted, beginning with the most accessible (sociodemographic) variables and ending with the most difficult (baseline neuropsychological) to identify in clinical practice. Nearly 60% of the participants of the intervention were classified as reliably improved. Reliable improvement was predicted by age (p = .003) and education (p = .011). Additional results suggested that younger patients were more likely to benefit specifically from the cognitive rehabilitation program (p = .001), and that higher education was also associated with improvement in the control group (p = .024). The findings are discussed in light of brain reserve theory. A practical implication is that cognitive rehabilitation programs should take the patients’ age into account and, if possible, adapt programs to increase the likelihood of improvement among older participants. (JINS, 2011, 17, 256–266)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, S.W., Damasio, H., Tranel, D. (1990). Neuropsychological impairments associated with lesions caused by tumor or stroke. Archives of Neurology, 47(4), 397405.CrossRefGoogle ScholarPubMed
Brand, N., Jolles, J. (1987). Information processing in depression and anxiety. Psychological Medicine, 17(1), 145153.CrossRefGoogle ScholarPubMed
Broadbent, D.E., Cooper, P.F., FitzGerald, P., Parkes, K.R. (1982). The Cognitive Failures Questionnaire (CFQ) and its correlates. The British Journal of Clinical Psychology, 21(Pt 1), 116.CrossRefGoogle ScholarPubMed
Brooks, J.O. III, Friedman, L., Pearman, A.M., Gray, C., Yesavage, J.A. (1999). Mnemonic training in older adults: Effects of age, length of training, and type of cognitive pretraining. International Psychogeriatrics, 11(1), 7584.CrossRefGoogle ScholarPubMed
Brooks, N., McKinlay, W., Symington, C., Beattie, A., Campsie, L. (1987). Return to work within the first seven years of severe head injury. Brain Injury, 1(1), 519.CrossRefGoogle ScholarPubMed
Charlton, R.A., Barrick, T.R., McIntyre, D.J., Shen, Y., O'Sullivan, M., Howe, F.A., Markus, H.S. (2006). White matter damage on diffusion tensor imaging correlates with age-related cognitive decline. Neurology, 66(2), 217222. doi:10.1212/01.wnl.0000194256.15247.83CrossRefGoogle ScholarPubMed
Chu, B.C., Millis, S., Arango-Lasprilla, J.C., Hanks, R., Novack, T., Hart, T. (2007). Measuring recovery in new learning and memory following traumatic brain injury: a mixed-effects modeling approach. Journal of Clinical and Experimental Neuropsychology, 29(6), 617625. doi:10.1080/13803390600878893CrossRefGoogle ScholarPubMed
Correa, D.D., Shi, W., Thaler, H.T., Cheung, A.M., DeAngelis, L.M., Abrey, L.E. (2008). Longitudinal cognitive follow-up in low grade gliomas. Journal of Neuro-Oncology, 86(3), 321327.CrossRefGoogle ScholarPubMed
DeAngelis, L.M. (2001). Brain tumors. New England Journal of Medicine, 344(2), 114123.CrossRefGoogle ScholarPubMed
Evans, C., Margison, F., Barkham, M. (1998). The contribution of reliable and clinically significant change methods to evidence-based mental health. Evidence-Based Mental Health, 1(3), 7072.CrossRefGoogle Scholar
Field, A. (2005). Discovering statistics using SPSS (2nd ed.). Thousand Oaks, CA: Sage Publications, Inc.Google Scholar
Fiszdon, J.M., Cardenas, A.S., Bryson, G.J., Bell, M.D. (2005). Predictors of remediation success on a trained memory task. The Journal of Nervous and Mental Disease, 193(9), 602608.CrossRefGoogle ScholarPubMed
Fratiglioni, L., Wang, H.X. (2007). Brain reserve hypothesis in dementia. Journal of Alzheimer's Disease, 12(1), 1122.CrossRefGoogle ScholarPubMed
Gehring, K., Aaronson, N.K., Taphoorn, M.J.B., Sitskoorn, M.M. (accepted for publication). A description of a cognitive rehabilitation program evaluated in brain tumor patients with mild to moderate cognitive deficits.Google Scholar
Gehring, K., Sitskoorn, M.M. (2004). Handleiding C-Car [Manual C-Car].Google Scholar
Gehring, K., Sitskoorn, M.M., Gundy, C.M., Sikkes, S.A., Klein, M., Postma, T.J., Aaronson, N.K. (2009). Cognitive rehabilitation in patients with gliomas: A randomized, controlled trial. Journal of Clinical Oncology, 27(22), 37123722. doi:10.1200/JCO.2008.20.5765CrossRefGoogle ScholarPubMed
Gordon, B.A., Rykhlevskaia, E.I., Brumback, C.R., Lee, Y., Elavsky, S., Konopack, J.F., Fabiani, M. (2008). Neuroanatomical correlates of aging, cardiopulmonary fitness level, and education. Psychophysiology, 45(5), 825838. doi:10.1111/j.1469-8986.2008.00676.xCrossRefGoogle ScholarPubMed
Grafman, J., Salazar, A., Weingartner, H., Vance, S., Amin, D. (1986). The relationship of brain-tissue loss volume and lesion location to cognitive deficit. The Journal of Neuroscience, 6(2), 301307.CrossRefGoogle ScholarPubMed
Green, R.E., Colella, B., Christensen, B., Johns, K., Frasca, D., Bayley, M., Monette, G. (2008). Examining moderators of cognitive recovery trajectories after moderate to severe traumatic brain injury. Archives of Physical Medicine and Rehabilitation, 89(12 Suppl), S16S24. doi:10.1016/j.apmr.2008.09.551CrossRefGoogle ScholarPubMed
Hammes, J. (1971). De Stroop Kleur-Woord Test: Handleiding [The Stroop Color-Word Test: Manual]. Amsterdam, The Netherlands: Harcourt.Google Scholar
Hukkelhoven, C.W., Steyerberg, E.W., Rampen, A.J., Farace, E., Habbema, J.D., Marshall, L.F., Maas, A.I. (2003). Patient age and outcome following severe traumatic brain injury: An analysis of 5600 patients. Journal of Neurosurgery, 99(4), 666673. doi:10.3171/jns.2003.99.4.0666CrossRefGoogle ScholarPubMed
Jolles, J., Houx, P.J., Van Boxtel, M.P.J., Ponds, R.W.H.M. (1995). Maastricht Aging Study: Determinants of Cognitive Aging. Maastricht, The Netherlands: Neuropsych Publishers.Google Scholar
Klein, M., Taphoorn, M.J., Heimans, J.J., Van Der Ploeg, H.M., Vandertop, W.P., Smit, E.F., Aaronson, N.K. (2001). Neurobehavioral status and health-related quality of life in newly diagnosed high-grade glioma patients. Journal of Clinical Oncology, 19(20), 40374047.CrossRefGoogle ScholarPubMed
Laack, N.N., Brown, P.D., Ivnik, R.J., Furth, A.F., Ballman, K.V., Hammack, J.E., Buckner, J.C. (2005). Cognitive function after radiotherapy for supratentorial low-grade glioma: A North Central Cancer Treatment Group prospective study. International Journal of Radiation Oncology, Biology, Physics, 63(4), 11751183.CrossRefGoogle ScholarPubMed
Langbaum, J.B., Rebok, G.W., Bandeen-Roche, K., Carlson, M.C. (2009). Predicting memory training response patterns: Results from ACTIVE. The Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 64(1), 1423. doi:10.1093/geronb/gbn026CrossRefGoogle ScholarPubMed
Lidstone, V., Butters, E., Seed, P.T., Sinnott, C., Beynon, T., Richards, M. (2003). Symptoms and concerns amongst cancer outpatients: Identifying the need for specialist palliative care. Palliative Medicine, 17(7), 588595.CrossRefGoogle ScholarPubMed
Luteijn, F., Van der Ploeg, F.A.E. (1983). Handleiding Groninger Intelligentie Test (GIT). [Manual GIT]. Lisse: Swets and Zeitlinger.Google Scholar
Maassen, G.H., Bossema, E., Brand, N. (2009). Reliable change and practice effects: Outcomes of various indices compared. [Comparative Study]. Journal of Clinical and Experimental Neuropsychology, 31(3), 339352.CrossRefGoogle ScholarPubMed
Malec, J.F., Basford, J.S. (1996). Postacute brain injury rehabilitation. Archives of Physical Medicine and Rehabilitation, 77(2), 198207.CrossRefGoogle ScholarPubMed
McSweeny, A., Naugle, R.I., Chelune, G.J., Luders, H. (1993). “T Scores for Change”: An illustration of a regression approach to depicting change in clinical neuropsychology. The Clinical Neuropsychologist, 7(3), 300312. doi:10.1080/13854049308401901CrossRefGoogle Scholar
Medalia, A., Richardson, R. (2005). What predicts a good response to cognitive remediation interventions? Schizophrenia Bulletin, 31(4), 942953.CrossRefGoogle ScholarPubMed
Meyers, C.A., Berger, M.S., Prados, M. (2005). Functional outcomes. Textbook of neuro-oncology (pp. 101104). Philadelphia: Elsevier Saunders.CrossRefGoogle Scholar
Meyers, C.A., Brown, P.D. (2006). Role and relevance of neurocognitive assessment in clinical trials of patients with CNS tumors. Journal of Clinical Oncology, 24(8), 13051309.CrossRefGoogle ScholarPubMed
Mukand, J.A., Blackinton, D.D., Crincoli, M.G., Lee, J.J., Santos, B.B. (2001). Incidence of neurologic deficits and rehabilitation of patients with brain tumors. American Journal of Physical Medicine & Rehabilitation, 80(5), 346350.CrossRefGoogle ScholarPubMed
Neely, A.S., Backman, L. (1995). Effects of multifactorial memory training in old age: Generalizability across tasks and individuals. The Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 50(3), P134P140.CrossRefGoogle ScholarPubMed
Ponds, R.W.H.M., Rozendaal, N., Jolles, J. (1999). The Cognitive Failure Questionnaire: Factor structure, effects of age, sex and education and the relation with cognitive performance and psychosocial variables. Maastricht, The Netherlands: Neuropsych Publishers.Google Scholar
Robertson, I.H., Murre, J.M. (1999). Rehabilitation of brain damage: Brain plasticity and principles of guided recovery. Psychological Bulletin, 125(5), 544575.CrossRefGoogle ScholarPubMed
Rohling, M.L., Faust, M.E., Beverly, B., Demakis, G. (2009). Effectiveness of cognitive rehabilitation following acquired brain injury: A meta-analytic re-examination of Cicerone et al.'s (2000, 2005) systematic reviews. Neuropsychology, 23(1), 2039. doi:10.1037/a0013659CrossRefGoogle ScholarPubMed
Schiff, D., Brown, P.D., Giannini, C. (2007). Outcome in adult low-grade glioma: The impact of prognostic factors and treatment. Neurology, 69(13), 13661373. doi:10.1212/01.wnl.0000277271.47601.a1CrossRefGoogle ScholarPubMed
Sherer, M., Stouter, J., Hart, T., Nakase-Richardson, R., Olivier, J., Manning, E., Yablon, S.A. (2006). Computed tomography findings and early cognitive outcome after traumatic brain injury. Brain Injury, 20(10), 9971005. doi:10.1080/02699050600677055CrossRefGoogle ScholarPubMed
Stern, Y. (2009). Cognitive reserve. Neuropsychologia, 47(10), 20152028. doi:10.1016/j.neuropsychologia.2009.03.004CrossRefGoogle ScholarPubMed
Stewart, A.L., Ware, J.E., Sherbourne, C.D., Wells, K.B. (1992). Psychological distress/well-being and cognitive functioning measures. Measuring functioning and well-being: The medical outcomes study approach (pp. 102142). Durham, NC: Duke University.Google Scholar
Strangman, G.E., O'Neil-Pirozzi, T.M., Goldstein, R., Kelkar, K., Katz, D.I., Burke, D., Glenn, M.B. (2008). Prediction of memory rehabilitation outcomes in traumatic brain injury by using functional magnetic resonance imaging. Archives of Physical Medicine and Rehabilitation, 89(5), 974981. doi:10.1016/j.apmr.2008.02.011CrossRefGoogle ScholarPubMed
Stroop, J.R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18(6), 643662.CrossRefGoogle Scholar
van Boxtel, M.P., Buntinx, F., Houx, P.J., Metsemakers, J.F., Knottnerus, A., Jolles, J. (1998). The relation between morbidity and cognitive performance in a normal aging population. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 53(2), M147M154.CrossRefGoogle Scholar
Verhaeghen, P., de Mey, G., Helsen, Z., van Assel, A., Vanwijnsberghe, L. (1992). Omgaan met het geheugen. Handboek voor hulpverleners en cursusbegeleiders. [Managing memory. Handbook for therapists and course supervisors.]. Leuven, Belgium/Amersfoort, The Netherlands: Acco.Google Scholar
Yesavage, J.A., Sheikh, J.I., Friedman, L., Tanke, E. (1990). Learning mnemonics: Roles of aging and subtle cognitive impairment. Psychology and Aging, 5(1), 133137.CrossRefGoogle ScholarPubMed
Youden, W.J. (1950). Index for rating diagnostic tests. Cancer, 3(1), 3235.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Zwaagstra, R., Schmidt, I., Vanier, M. (1996). Recovery of speed of information processing in closed-head-injury patients. Journal of Clinical and Experimental Neuropsychology, 18(3), 383393.CrossRefGoogle ScholarPubMed