Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T11:40:37.580Z Has data issue: false hasContentIssue false

Neurocognitive SuperAging in Older Adults Living With HIV: Demographic, Neuromedical and Everyday Functioning Correlates

Published online by Cambridge University Press:  20 March 2019

Rowan Saloner
Affiliation:
San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, California Department of Psychiatry, University of California, San Diego, San Diego, California
Laura M. Campbell
Affiliation:
San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, California Department of Psychiatry, University of California, San Diego, San Diego, California
Vanessa Serrano
Affiliation:
Department of Psychiatry, University of California, San Diego, San Diego, California
Jessica L. Montoya
Affiliation:
Department of Psychiatry, University of California, San Diego, San Diego, California
Elizabeth Pasipanodya
Affiliation:
Department of Psychiatry, University of California, San Diego, San Diego, California
Emily W. Paolillo
Affiliation:
San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, California Department of Psychiatry, University of California, San Diego, San Diego, California
Donald Franklin
Affiliation:
Department of Psychiatry, University of California, San Diego, San Diego, California
Ronald J. Ellis
Affiliation:
Department of Psychiatry, University of California, San Diego, San Diego, California
Scott L. Letendre
Affiliation:
Department of Medicine, University of California, San Diego, San Diego, California
Ann C. Collier
Affiliation:
Department of Medicine, University of Washington, Seattle, Washington
David B. Clifford
Affiliation:
Department of Neurology, Washington University, St. Louis, Missouri
Benjamin B. Gelman
Affiliation:
Department of Pathology, University of Texas Medical Branch, Galveston, Texas
Christina M. Marra
Affiliation:
Department of Neurology, University of Washington, Seattle, Washington
J. Allen McCutchan
Affiliation:
Department of Medicine, University of California, San Diego, San Diego, California
Susan Morgello
Affiliation:
Department of Neurology, Icahn School of Medicine of Mount Sinai, New York, New York
Ned Sacktor
Affiliation:
Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
Dilip V. Jeste
Affiliation:
Department of Psychiatry, University of California, San Diego, San Diego, California Stein Institute for Research on Aging, University of California, San Diego, San Diego, California
Igor Grant
Affiliation:
Department of Psychiatry, University of California, San Diego, San Diego, California
Robert K. Heaton
Affiliation:
Department of Psychiatry, University of California, San Diego, San Diego, California
David J. Moore*
Affiliation:
Department of Psychiatry, University of California, San Diego, San Diego, California
the CHARTER and HNRP Groups
Affiliation:
San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, California Department of Psychiatry, University of California, San Diego, San Diego, California Department of Medicine, University of California, San Diego, San Diego, California Department of Medicine, University of Washington, Seattle, Washington Department of Neurology, Washington University, St. Louis, Missouri Department of Pathology, University of Texas Medical Branch, Galveston, Texas Department of Neurology, University of Washington, Seattle, Washington Department of Neurology, Icahn School of Medicine of Mount Sinai, New York, New York Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland Stein Institute for Research on Aging, University of California, San Diego, San Diego, California
*
Correspondence and reprint requests to: David J. Moore, University of California, San Diego, HIV Neurobehavioral Research Program, 220 Dickinson Street, Suite B, MC8231, San Diego, CA 92103-8231. E-mail: djmoore@ucsd.edu

Abstract

Objectives: Studies of neurocognitively elite older adults, termed SuperAgers, have identified clinical predictors and neurobiological indicators of resilience against age-related neurocognitive decline. Despite rising rates of older persons living with HIV (PLWH), SuperAging (SA) in PLWH remains undefined. We aimed to establish neuropsychological criteria for SA in PLWH and examined clinically relevant correlates of SA. Methods: 734 PLWH and 123 HIV-uninfected participants between 50 and 64 years of age underwent neuropsychological and neuromedical evaluations. SA was defined as demographically corrected (i.e., sex, race/ethnicity, education) global neurocognitive performance within normal range for 25-year-olds. Remaining participants were labeled cognitively normal (CN) or impaired (CI) based on actual age. Chi-square and analysis of variance tests examined HIV group differences on neurocognitive status and demographics. Within PLWH, neurocognitive status differences were tested on HIV disease characteristics, medical comorbidities, and everyday functioning. Multinomial logistic regression explored independent predictors of neurocognitive status. Results: Neurocognitive status rates and demographic characteristics differed between PLWH (SA=17%; CN=38%; CI=45%) and HIV-uninfected participants (SA=35%; CN=55%; CI=11%). In PLWH, neurocognitive groups were comparable on demographic and HIV disease characteristics. Younger age, higher verbal IQ, absence of diabetes, fewer depressive symptoms, and lifetime cannabis use disorder increased likelihood of SA. SA reported increased independence in everyday functioning, employment, and health-related quality of life than non-SA. Conclusions: Despite combined neurological risk of aging and HIV, youthful neurocognitive performance is possible for older PLWH. SA relates to improved real-world functioning and may be better explained by cognitive reserve and maintenance of cardiometabolic and mental health than HIV disease severity. Future research investigating biomarker and lifestyle (e.g., physical activity) correlates of SA may help identify modifiable neuroprotective factors against HIV-related neurobiological aging. (JINS, 2019, 25, 507–519)

Type
Regular Research
Copyright
Copyright © The International Neuropsychological Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anstey, K. J., Sargent-Cox, K., Garde, E., Cherbuin, N., & Butterworth, P. (2014). Cognitive development over 8 years in midlife and its association with cardiovascular risk factors. Neuropsychology, 28(4), 653665. doi:10.1037/neu0000044CrossRefGoogle ScholarPubMed
Archibald, S. L., McCutchan, J. A., Sanders, C., Wolfson, T., Jernigan, T. L., Ellis, R. J., ... Fennema-Notestine, C. (2014). Brain morphometric correlates of metabolic variables in HIV: The CHARTER study. Journal of Neurovirology, 20(6), 603611. doi:10.1007/s13365-014-0284-0CrossRefGoogle ScholarPubMed
Battistella, G., Fornari, E., Annoni, J. M., Chtioui, H., Dao, K., Fabritius, M., ... Giroud, C. (2014). Long-term effects of cannabis on brain structure. Neuropsychopharmacology, 39(9), 20412048. doi:10.1038/npp.2014.67CrossRefGoogle ScholarPubMed
Beck, A., Steer, R., & Brown, G. (1996). Manual for Beck Depression Inventory II (BDI-II). San Antonio, TX, Psychology Corporation.Google Scholar
Blackstone, K., Moore, D. J., Franklin, D. R., Clifford, D. B., Collier, A. C., Marra, C. M., ... Heaton, R. K. (2012). Defining neurocognitive impairment in HIV: Deficit scores versus clinical ratings. Clinical Neuropsychology, 26(6), 894908. doi:10.1080/13854046.2012.694479CrossRefGoogle ScholarPubMed
Blanco, J. R., Jarrín, I., Vallejo, M., Berenguer, J., Solera, C., Rubio, R., ... Moreno, S. (2012). Definition of advanced age in HIV infection: Looking for an age cut-off. AIDS Research and Human Retroviruses, 28(9), 10001006. doi:10.1089/aid.2011.0377CrossRefGoogle ScholarPubMed
Bott, N. T., Bettcher, B. M., Yokoyama, J. S., Frazier, D. T., Wynn, M., Karydas, A., ... Kramer, J. H. (2017). Youthful processing speed in older adults: genetic, biological, and behavioral predictors of cognitive processing speed trajectories in aging. Frontiers in Aging Neuroscience, 9, 55. doi:10.3389/fnagi.2017.00055CrossRefGoogle Scholar
Carey, C. L., Woods, S. P., Gonzalez, R., Conover, E., Marcotte, T. D., Grant, I., & Heaton, R.K. (2004). Predictive validity of global deficit scores in detecting neuropsychological impairment in HIV infection. Journal of Clinical and Experimental Neuropsychology, 26(3), 307319. doi:10.1080/13803390490510031CrossRefGoogle ScholarPubMed
Casaletto, K. B., Cattie, J., Franklin, D. R., Moore, D. J., Woods, S. P., Grant, I., & Heaton, R. K. (2014). The Wide Range Achievement Test-4 Reading Subtest “Holds” in HIV-infected individuals. Journal of Clinical and Experimental Neuropsychology, 36(9), 9921001. doi:10.1080/13803395.2014.960370CrossRefGoogle Scholar
Centers for Disease Control and Prevention. (2018). HIV Among People Aged 50 and Over. Retrieved from https://www.cdc.gov/hiv/group/age/olderamericans/index.html Google Scholar
Chang, L., Cloak, C., Yakupov, R., & Ernst, T. (2006). Combined and independent effects of chronic marijuana use and HIV on brain metabolites. Journal of Neuroimmune Pharmacology, 1(1), 6576. doi:10.1007/s11481-005-9005-zCrossRefGoogle ScholarPubMed
Chelune, G. J., Heaton, R. K., & Lehman, R. A. W. (1986). Neuropsychological and personality correlates of patients’ complaints of disability. In Advances in clinical neuropsychology, (Vol. 3., pp. 95126). New York, NY: Plenum Press.CrossRefGoogle Scholar
Cheng, G., Huang, C., Deng, H., & Wang, H. (2012). Diabetes as a risk factor for dementia and mild cognitive impairment: A meta‐analysis of longitudinal studies. Internal Medicine Journal, 42(5), 484491. doi:doi:10.1111/j.1445-5994.2012.02758.xCrossRefGoogle ScholarPubMed
Cook, A. H., Sridhar, J., Ohm, D., Rademaker, A., Mesulam, M. -M., Weintraub, S., & Rogalski, E. (2017). Rates of cortical atrophy in adults 80 years and older with superior vs average episodic memory. JAMA, 317(13), 13731375.CrossRefGoogle ScholarPubMed
Cristiani, S. A., Pukay-Martin, N. D., & Bornstein, R. A. (2004). Marijuana use and cognitive function in HIV-infected people. The Journal of Neuropsychiatry and Clinical Neurosciences, 16(3), 330335. doi:10.1176/jnp.16.3.330CrossRefGoogle ScholarPubMed
Daffner, K. R. (2010). Promoting successful cognitive aging: A comprehensive review. Journal of Alzheimers Disease, 19(4), 11011122. doi:10.3233/jad-2010-1306CrossRefGoogle ScholarPubMed
Dekhtyar, M., Papp, K. V., Buckley, R., Jacobs, H. I. L., Schultz, A.P., Johnson, K. A., ... Rentz, D. M. (2017). Neuroimaging markers associated with maintenance of optimal memory performance in late-life. Neuropsychologia, 100, 164170. doi:10.1016/j.neuropsychologia.2017.04.037CrossRefGoogle ScholarPubMed
Ferreira, D., Machado, A., Molina, Y., Nieto, A., Correia, R., Westman, E., & Barroso, J. (2017). Cognitive variability during middle-age: Possible association with neurodegeneration and cognitive reserve. Frontiers in Aging Neuroscience, 9, 188.CrossRefGoogle ScholarPubMed
Gefen, T., Peterson, M., Papastefan, S. T., Martersteck, A., Whitney, K., Rademaker, A., ... Geula, C. (2015). Morphometric and histologic substrates of cingulate integrity in elders with exceptional memory capacity. Journal of Neuroscience, 35(4), 17811791. doi:10.1523/JNEUROSCI.2998-14.2015CrossRefGoogle ScholarPubMed
Grant, I., Franklin, D.R. Jr., Deutsch, R., Woods, S.P., Vaida, F., Ellis, R. J., ... Charter Group. (2014). Asymptomatic HIV-associated neurocognitive impairment increases risk for symptomatic decline. Neurology, 82(23), 20552062. doi:10.1212/WNL.0000000000000492CrossRefGoogle ScholarPubMed
Harrison, T. M., Maass, A., Baker, S. L., & Jagust, W. J. (2018). Brain morphology, cognition, and β-amyloid in older adults with superior memory performance. Neurobiology of Aging, 67, 162170. doi:10.1016/j.neurobiolaging.2018.03.024CrossRefGoogle ScholarPubMed
Hartshorne, J. K., & Germine, L.T. (2015). When does cognitive functioning peak? The asynchronous rise and fall of different cognitive abilities across the life span. Psychological Science, 26(4), 433443. doi:10.1177/0956797614567339CrossRefGoogle ScholarPubMed
Heaton, R. K., Clifford, D. B., Franklin, D. R. Jr., Woods, S. P., Ake, C., Vaida, F., ... Grant, I. (2010). HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER Study. Neurology, 75(23), 20872096. doi:10.1212/WNL.0b013e318200d727CrossRefGoogle ScholarPubMed
Heaton, R. K., Franklin, D. R., Ellis, R. J., McCutchan, J. A., Letendre, S. L., Leblanc, S., ... Grant, I. (2011). HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: Differences in rates, nature, and predictors. Journal of Neurovirology, 17(1), 316. doi:10.1007/s13365-010-0006-1CrossRefGoogle ScholarPubMed
Heaton, R. K., Marcotte, T. D., Mindt, M. R., Sadek, J., Moore, D. J., Bentley, H., ... Grant, I.; HNRC Group, (2004). The impact of HIV-associated neuropsychological impairment on everyday functioning. Journal of the International Neuropsychological Society, 10(3), 317331. doi:10.1017/s1355617704102130CrossRefGoogle ScholarPubMed
Heaton, R. K., Miller, S. W., Taylor, M. J., & Grant, I. (2004). Revised Comprehensive Norms for an Expanded Halstead Reitan Battery: Demographically Adjusted Neuropsychological Norms for African American and Caucasian Adults. Lutz, FL: Psychological Assessment Resources, Inc.Google Scholar
Heaton, R. K., Taylor, M. J., & Manly, J. (2003). Demographic effects and use of demographically corrected norms with the WAIS-III and WMS-III. In Clinical interpretation of the WAIS-III and WMS-III. (pp. 181210). San Diego, CA: Academic Press.CrossRefGoogle Scholar
Heaton, R. K., Temkin, N., Dikmen, S., Avitable, N., Taylor, M. J., Marcotte, T. D., & Grant, I. (2001). Detecting change: A comparison of three neuropsychological methods, using normal and clinical samples. Archives of Clinical Neuropsychology, 16(1), 7591.CrossRefGoogle ScholarPubMed
Henderson, W. A., Schlenk, E. A., Kim, K. H., Hadigan, C. M., Martino, A.C., Sereika, S.M., & Erlen, J.A. (2010). Validation of the MOS-HIV as a measure of health-related quality of life in persons living with HIV and liver disease. AIDS Care, 22(4), 483490. doi:10.1080/09540120903207292CrossRefGoogle ScholarPubMed
Jeste, D. V., Depp, C. A., & Vahia, I. V. (2010). Successful cognitive and emotional aging. World Psychiatry, 9(2), 7884.CrossRefGoogle ScholarPubMed
Kubera, M., Obuchowicz, E., Goehler, L., Brzeszcz, J., & Maes, M. (2011). In animal models, psychosocial stress-induced (neuro)inflammation, apoptosis and reduced neurogenesis are associated to the onset of depression. Progress in Neuro-psychopharmacology & Biological Psychiatry, 35(3), 744759. doi:10.1016/j.pnpbp.2010.08.026CrossRefGoogle Scholar
Lachman, M. E., Teshale, S., & Agrigoroaei, S. (2015). Midlife as a pivotal period in the life course: Balancing growth and decline at the crossroads of youth and old age. International Journal of Behavioral Development, 39(1), 2031. doi:10.1177/0165025414533223CrossRefGoogle ScholarPubMed
Lawton, M. P., & Brody, E. M. (1969). Assessment of older people: self-maintaining and instrumental activities of daily living. Gerontologist, 9(3), 179186.CrossRefGoogle ScholarPubMed
Lin, F., Ren, P., Mapstone, M., Meyers, S. P., Porsteinsson, A., Baran, T.M., & Alzheimer’s Disease Neuroimaging Initiative. (2017). The cingulate cortex of older adults with excellent memory capacity. Cortex, 86, 8392. doi:10.1016/j.cortex.2016.11.009CrossRefGoogle ScholarPubMed
MacDonald, P. L., & Gardner, R. C. (2000). Type I error rate comparisons of post hoc procedures for I j Chi-Square tables. Educational and Psychological Measurement, 60(5), 735754.CrossRefGoogle Scholar
Maes, M., Yirmyia, R., Noraberg, J., Brene, S., Hibbeln, J., Perini, G., ... Maj, M. (2009). The inflammatory & neurodegenerative (I&ND) hypothesis of depression: Leads for future research and new drug developments in depression. Metabolic Brain Disease, 24(1), 2753. doi:10.1007/s11011-008-9118-1CrossRefGoogle ScholarPubMed
Malaspina, L., Woods, S. P., Moore, D. J., Depp, C., Letendre, S. L., Jeste, D., ... Grant, I; HIV Neurobehavioral Research Programs (HNRP) Group. (2011). Successful cognitive aging in persons living with HIV infection. Journal of Neurovirology, 17(1), 110119. doi:10.1007/s13365-010-0008-zCrossRefGoogle ScholarPubMed
Mapstone, M., Lin, F., Nalls, M. A., Cheema, A. K., Singleton, A. B., Fiandaca, M.S., & Federoff, H.J. (2017). What success can teach us about failure: The plasma metabolome of older adults with superior memory and lessons for Alzheimer’s disease. Neurobiology of Aging, 51, 148155. doi:10.1016/j.neurobiolaging.2016.11.007CrossRefGoogle ScholarPubMed
Marsicano, G., Goodenough, S., Monory, K., Hermann, H., Eder, M., Cannich, A., ... Lutz, B. (2003). CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science, 302(5642), 8488. doi:10.1126/science.1088208CrossRefGoogle ScholarPubMed
Martin, M., & Zimprich, D. (2005). Cognitive development in midlife. Middle adulthood: A lifespan perspective, 179206.CrossRefGoogle Scholar
McCutchan, J. A., Marquie-Beck, J. A., Fitzsimons, C. A., Letendre, S. L., Ellis, R.J., Heaton, R. K., ... Grant, I. (2012). Role of obesity, metabolic variables, and diabetes in HIV-associated neurocognitive disorder. Neurology, 78(7), 485492. doi:10.1212/WNL.0b013e3182478d64CrossRefGoogle ScholarPubMed
Mogi, M., & Horiuchi, M. (2011). Neurovascular coupling in cognitive impairment associated with diabetes mellitus. Circulation Journal, 75(5), 10421048.CrossRefGoogle ScholarPubMed
Moore, D. J., Fazeli, P. L., Moore, R. C., Woods, S. P., Letendre, S.L., Jeste, D. V., ... HIV Neurobehavioral Research Program. (2017). Positive psychological factors are linked to successful cognitive aging among older persons living with HIV/AIDS. AIDS and Behavior, 22(5), 15511561. doi:10.1007/s10461-017-2001-5CrossRefGoogle Scholar
Moore, R. C., Fazeli, P. L., Jeste, D. V., Moore, D. J., Grant, I., & Woods, S. P. (2014). Successful cognitive aging and health-related quality of life in younger and older adults infected with HIV. AIDS and Behavior, 18(6), 11861197. doi:10.1007/s10461-014-0743-xCrossRefGoogle Scholar
Moore, R. C., Hussain, M. A., Watson, C. W., Fazeli, P. L., Marquine, M. J., Yarns, B. C., ... Moore, D. J. (2018). Grit and ambition are associated with better neurocognitive and everyday functioning among adults living with HIV. AIDS and Behavior, 22(10), 32143225. doi:10.1007/s10461-018-2061-1CrossRefGoogle Scholar
Morgan, E. E., Iudicello, J. E., Weber, E., Duarte, N. A., Riggs, P. K., Delano-Wood, L., ... Grant, I.; HIV Neurobehavioral Research Program. (2012). Synergistic effects of HIV infection and older age on daily functioning. Journal of Acquired Immune Deficiency Syndromes (1999), 61(3), 341348.CrossRefGoogle ScholarPubMed
Norman, M. A., Moore, D. J., Taylor, M., Franklin, D. Jr., Cysique, L., Ake, C., ... Group, H. (2011). Demographically corrected norms for African Americans and Caucasians on the Hopkins Verbal Learning Test-Revised, Brief Visuospatial Memory Test-Revised, Stroop Color and Word Test, and Wisconsin Card Sorting Test 64-Card Version. Journal of Clinical and Experimental Neuropsychology, 33(7), 793804. doi:10.1080/13803395.2011.559157CrossRefGoogle ScholarPubMed
Nucci, M., Mapelli, D., & Mondini, S. (2012). Cognitive Reserve Index questionnaire (CRIq): A new instrument for measuring cognitive reserve. Aging Clinical and Experimental Research, 24(3), 218226. doi:10.3275/7800Google ScholarPubMed
Pathai, S., Bajillan, H., Landay, A. L., & High, K. P. (2014). Is HIV a model of accelerated or accentuated aging? The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 69(7), 833842. doi:10.1093/gerona/glt168CrossRefGoogle ScholarPubMed
Prasad, S., Sajja, R. K., Naik, P., & Cucullo, L. (2014). Diabetes mellitus and blood-brain barrier dysfunction: An overview. Journal of Pharmacovigilance, 2(2), 125. doi:10.4172/2329-6887.1000125Google ScholarPubMed
Reed, B. R., Mungas, D., Farias, S. T., Harvey, D., Beckett, L., Widaman, K., ... DeCarli, C. (2010). Measuring cognitive reserve based on the decomposition of episodic memory variance. Brain, 133(Pt 8), 21962209. doi:10.1093/brain/awq154CrossRefGoogle ScholarPubMed
Rizzo, M. D., Crawford, R. B., Henriquez, J. E., Aldhamen, Y. A., Gulick, P., Amalfitano, A., & Kaminski, N. E. (2018). HIV-infected cannabis users have lower circulating CD16+ monocytes and IFN-gamma-inducible protein 10 levels compared with nonusing HIV patients. Aids, 32(4), 419429. doi:10.1097/qad.0000000000001704Google ScholarPubMed
Rogalski, E. J., Gefen, T., Shi, J., Samimi, M., Bigio, E., Weintraub, S., ... Mesulam, M.M. (2013). Youthful memory capacity in old brains: Anatomic and genetic clues from the Northwestern SuperAging Project. Journal of Cognitive Neuroscience, 25(1), 2936. doi:10.1162/jocn_a_00300CrossRefGoogle ScholarPubMed
Rom, S., & Persidsky, Y. (2013). Cannabinoid receptor 2: Potential role in immunomodulation and neuroinflammation. Journal of Neuroimmune Pharmacology, 8(3), 608620. doi:10.1007/s11481-013-9445-9CrossRefGoogle ScholarPubMed
Saloner, R., & Cysique, L. A. (2017). HIV-associated neurocognitive disorders: A global perspective. Journal of the International Neuropsychological Society, 23(9-10), 860869.CrossRefGoogle ScholarPubMed
Salthouse, T. A. (2003). Memory aging from 18 to 80. Alzheimer Disease and Associated Disorders, 17(3), 162167.CrossRefGoogle ScholarPubMed
Salthouse, T. A. (2009). When does age-related cognitive decline begin? Neurobiology of Aging, 30(4), 507514. doi:10.1016/j.neurobiolaging.2008.09.023CrossRefGoogle ScholarPubMed
Sanchez, A. J., & Garcia-Merino, A. (2012). Neuroprotective agents: Cannabinoids. Clinical Immunology, 142(1), 5767. doi:10.1016/j.clim.2011.02.010CrossRefGoogle ScholarPubMed
Schaie, K. W., & Willis, S. L. (2010). The Seattle Longitudinal Study of Adult Cognitive Development. ISSBD Bulletin, 57(1), 2429.Google ScholarPubMed
Selzam, S., Krapohl, E., von Stumm, S., O’Reilly, P. F., Rimfeld, K., Kovas, Y., ... Plomin, R. (2017). Predicting educational achievement from DNA. Molecular Psychiatry, 22(2), 267272. doi:10.1038/mp.2016.107CrossRefGoogle ScholarPubMed
Sheppard, D. P., Iudicello, J. E., Morgan, E. E., Kamat, R., Clark, L.R., Avci, G., ... Woods, S.P. (2017). Accelerated and accentuated neurocognitive aging in HIV infection. Journal of Neurovirology, 23(3), 492500. doi:10.1007/s13365-017-0523-2CrossRefGoogle ScholarPubMed
Smit, M., Brinkman, K., Geerlings, S., Smit, C., Thyagarajan, K., van Sighem, A., ... Hallett, T.B. (2015). Future challenges for clinical care of an ageing population infected with HIV: A modelling study. The Lancet Infectious Diseases, 15(7), 810818.CrossRefGoogle ScholarPubMed
Stern, Y. (2002). What is cognitive reserve? Theory and research application of the reserve concept. Journal of the International Neuropsychological Society, 8(3), 448460.CrossRefGoogle ScholarPubMed
Stern, Y. (2012). Cognitive reserve in ageing and Alzheimer’s disease. The Lancet. Neurology, 11(11), 10061012. doi:10.1016/s1474-4422(12)70191-6CrossRefGoogle ScholarPubMed
Sun, F. W., Stepanovic, M. R., Andreano, J., Barrett, L. F., Touroutoglou, A., & Dickerson, B.C. (2016). Youthful brains in older adults: Preserved neuroanatomy in the default mode and salience networks contributes to youthful memory in superaging. Journal of Neuroscience, 36(37), 96599668. doi:10.1523/JNEUROSCI.1492-16.2016CrossRefGoogle ScholarPubMed
Taguchi, A. (2009). Vascular factors in diabetes and Alzheimer’s disease. Journal of Alzheimers Disease, 16(4), 859864. doi:10.3233/jad-2009-0975CrossRefGoogle ScholarPubMed
Thames, A. D., Kim, M. S., Becker, B. W., Foley, J. M., Hines, L. J., Singer, E. J., ... Hinkin, C. H. (2011). Medication and finance management among HIV-infected adults: The impact of age and cognition. Journal of Clinical and Experimental Neuropsychology, 33(2), 200209.CrossRefGoogle ScholarPubMed
Thames, A. D., Kuhn, T. P., Williamson, T. J., Jones, J. D., Mahmood, Z., & Hammond, A. (2017). Marijuana effects on changes in brain structure and cognitive function among HIV+ and HIV− adults. Drug and Alcohol Dependence, 170, 120127. doi:10.1016/j.drugalcdep.2016.11.007CrossRefGoogle ScholarPubMed
Thames, A. D., Mahmood, Z., Burggren, A. C., Karimian, A., & Kuhn, T. (2016). Combined effects of HIV and marijuana use on neurocognitive functioning and immune status. AIDS Care, 28(5), 628632. doi:10.1080/09540121.2015.1124983CrossRefGoogle ScholarPubMed
Vahia, I. V., Meeks, T. W., Thompson, W. K., Depp, C. A., Zisook, S., Allison, M., ... Jeste, D.V. (2010). Subthreshold depression and successful aging in older women. The American Journal of Geriatric Psychiatry, 18(3), 212220. doi:10.1097/JGP.0b013e3181b7f10eCrossRefGoogle ScholarPubMed
Valcour, V., Shikuma, C., Shiramizu, B., Watters, M., Poff, P., Selnes, O., ... Sacktor, N. (2004). Higher frequency of dementia in older HIV-1 individuals: The Hawaii Aging with HIV-1 Cohort. Neurology, 63(5), 822827.CrossRefGoogle ScholarPubMed
Valcour, V. G., Sacktor, N. C., Paul, R. H., Watters, M. R., Selnes, O. A., Shiramizu, B. T., ... Shikuma, C. M. (2006). Insulin resistance is associated with cognition among HIV-1-infected patients: The Hawaii Aging With HIV cohort. Journal of Acquired Immune Deficiency Syndromes (1999), 43(4), 405410. doi:10.1097/01.qai.0000243119.67529.f5CrossRefGoogle ScholarPubMed
Valcour, V. G., Shikuma, C. M., Shiramizu, B. T., Williams, A. E., Watters, M. R., Poff, P. W., Sacktor, N. C. (2005). Diabetes, insulin resistance, and dementia among HIV-1-infected patients. Journal of Acquired Immune Deficiency Syndromes (1999), 38(1), 3136.CrossRefGoogle ScholarPubMed
Vance, D. E., & Burrage, J. W. (2006). Promoting successful cognitive aging in adults with HIV: Strategies for intervention. Journal of Gerontological Nursing, 32(11), 3441.Google ScholarPubMed
Vance, D. E., Fazeli, P. L., Dodson, J. E., Ackerman, M., Talley, M., & Appel, S. J. (2014). The Synergistic Effects of HIV, Diabetes, and Aging on Cognition: Implications for Practice and Research. The Journal of Neuroscience Nursing, 46(5), 292305. doi:10.1097/JNN.0000000000000074CrossRefGoogle ScholarPubMed
Vance, D. E., Fazeli, P. L., & Gakumo, C. A. (2013). The impact of neuropsychological performance on everyday functioning between older and younger adults with and without HIV. Journal of the Association of Nurses in AIDS Care, 24(2), 112125.CrossRefGoogle ScholarPubMed
Wang, X., Ren, P., Baran, T. M., Raizada, R. D. S., Mapstone, M., Lin, F., & Alzheimer’s Disease Neuroimaging, I. (2019). Longitudinal functional brain mapping in supernormals. Cerebral Cortex, 29(1), 242252. doi:10.1093/cercor/bhx322CrossRefGoogle ScholarPubMed
Wilkinson, G., & Robertson, G. (2006). Wide Range Achievement Test-4 (WRAT-4). Lutz, FL: Psychological Assessment Resources Inc.Google Scholar
Wing, E. J. (2016). HIV and aging. International Journal of Infectious Diseases, 53, 6168. doi:10.1016/j.ijid.2016.10.004CrossRefGoogle ScholarPubMed
Woods, S.P., Iudicello, J.E., Moran, L.M., Carey, C.L., Dawson, M.S., & Grant, I. (2008). HIV-associated prospective memory impairment increases risk of dependence in everyday functioning. Neuropsychology, 22(1), 110117. doi:10.1037/0894-4105.22.1.110CrossRefGoogle ScholarPubMed
World Health Organization. (1998). Composite Diagnositic International Interview (CIDI, version 2.1). Geneva, Switzerland: World Health Organization.Google Scholar
Wu, A. W., Revicki, D. A., Jacobson, D., & Malitz, F. E. (1997). Evidence for reliability, validity and usefulness of the Medical Outcomes Study HIV Health Survey (MOS-HIV). Quality of Life Research, 6(6), 481493.CrossRefGoogle Scholar