Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T22:55:39.277Z Has data issue: false hasContentIssue false

Influence of Education on Subcortical Hyperintensities and Global Cognitive Status in Vascular Dementia

Published online by Cambridge University Press:  09 March 2011

Elizabeth M. Lane*
Affiliation:
Department of Psychology, University of Missouri – Saint Louis, Saint Louis, Missouri
Robert H. Paul
Affiliation:
Department of Psychology, University of Missouri – Saint Louis, Saint Louis, Missouri
David J. Moser
Affiliation:
Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa
Thomas D. Fletcher
Affiliation:
Department of Psychology, University of Missouri – Saint Louis, Saint Louis, Missouri
Ronald A. Cohen
Affiliation:
Department of Psychiatry and Human Behavior, Brown University Medical School, Providence, Rhode Island
*
Correspondence and reprint requests to: Elizabeth M. Lane, Department of Psychology, University of Missouri – Saint Louis, Saint Louis, MO 63121. E-mail: emlane@mail.umsl.edu

Abstract

Subcortical hyperintensities (SH) on neuroimaging are a prominent feature of vascular dementia (VaD) and SH severity correlates with cognitive impairment in this population. Previous studies demonstrated that SH burden accounts for a degree of the cognitive burden among VaD patients, although it remains unclear if individual factors such as cognitive reserve influence cognitive status in VaD. To address this issue, we examined 36 individuals diagnosed with probable VaD (age = 77.56; education = 12). All individuals underwent MMSE evaluations and MRI brain scans. We predicted that individuals with higher educational attainment would exhibit less cognitive difficulty despite similar levels of SH volume, compared to individuals with less educational attainment. A regression analysis revealed that greater SH volume was associated with lower scores on the MMSE. Additionally, education moderated the relationship between SH volume and MMSE score, demonstrating that individuals with higher education had higher scores on the MMSE despite similar degrees of SH burden. These results suggest that educational attainment buffers the deleterious effects of SH burden on cognitive status among VaD patients. (JINS, 2011, 17, 531–536)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aiken, L.S., West, S.G. (1991). Multiple regression: Testing and interactions. Newbury Park, CA: Sage.Google Scholar
Bieliauskas, L.A., Back-Madruga, C., Lindsay, K.L., Wright, E.C., Kronfol, Z., Lok, A.S.F., The Halt-C Trial Group (2007). Cognitive reserve and neuropsychological functioning in patients infected with Hepatitis C. Journal of the International Neuropsychological Society, 13(4), 687692.CrossRefGoogle ScholarPubMed
Bombois, S., Debette, S., Delbeuck, X., Bruandet, A., Lepoittevin, S., Delmaire, C., Pasquier, F. (2007). Prevalence of subcortical vascular lesions and association with executive function in mild cognitive impairment subtypes. Stroke, 38, 25952597.CrossRefGoogle ScholarPubMed
Boyle, P.A., Paul, R.H., Moser, D.J., Cohen, R.A. (2004). Executive impairments predict functional declines in vascular dementia. The Clinical Neuropsychologist, 18(1), 7582.CrossRefGoogle ScholarPubMed
Cohen, J., Cohen, P., West, S.G., Aiken, L.S. (2003). Applied multiple regression/correlation analysis for the behavioral sciences (3rd ed.). Hillsdale: Erlbaum.Google Scholar
Cohen, R.A., Browndyke, J.N., Moser, D.J., Paul, R.H., Gordon, N., Sweet, L. (2003). Long-term Citicoline (Cytidine Diphosphate Choline) use in patients with vascular dementia: Neuroimaging and neuropsychological outcomes. Cerebrovascular Diseases, 16, 199204.CrossRefGoogle ScholarPubMed
Cohen, R.A., Paul, R.H., Ott, B.R., Moser, D.J., Zawacki, T.M., Stone, W., Gordon, N. (2002). The relationship of subcortical MRI hyperintensities and brain volume to cognitive function in vascular dementia. Journal of the International Neuropsychological Society, 8, 743752.CrossRefGoogle ScholarPubMed
Davison, A.C., Hinkley, D.V. (1999). Bootstrap methods and their application. London: Cambridge University Press.Google Scholar
Del Ser, T., Hachinski, V., Merskey, H., Munoz, D.G. (1999). An autopsy-verified study of the effect of education on degenerative dementia. Brain, 122, 23092319.CrossRefGoogle ScholarPubMed
Di Iorio, A., Zito, M., Lupinetti, M., Abate, G. (1999). Are vascular factors involved in Alzheimer's disease? Facts and theories. Aging Clinical and Experimental Research, 11, 345352.CrossRefGoogle ScholarPubMed
Dufouil, C., Alperovitch, A., Tzourio, C. (2003). Influence of education on the relationship between white matter lesions and cognition. Neurology, 60, 831836.CrossRefGoogle ScholarPubMed
Efron, B., Tibshirani, R. (1993). An introduction to the bootstrap. New York: Chapman & Hall.CrossRefGoogle Scholar
Evans, M.G. (1985). A Monte-Carlo study of the effects of correlated method variance in moderated multiple regression analysis. Organizational Behavior and Human Decision Processes, 36, 305323.CrossRefGoogle Scholar
Fischer, P., Krampla, W., Mostafaie, N., Zehetmayer, S., Rainer, M., Jungworth, S., Tragl, K.H. (2007). VITA study: White matter hyperintensities of vascular and degenerative origin in the elderly. Journal of Neural Transmission, Supplement, 72, 181188.Google Scholar
Fratiglioni, L., Paillard-Borg, S., Winblad, B. (2004). An active and socially integrated lifestyle in late life might protect against dementia. Lancet Neurology, 3, 343353.CrossRefGoogle ScholarPubMed
Garrett, K.D., Cohen, R.A., Paul, R.H., Moser, D.J., Malloy, P.F., Shah, P., Haque, O. (2004). Computer-mediated measurement and subjective ratings of white matter hyperintensities in vascular dementia: Relationships to neuropsychological performance. The Clinical Neuropsychologist, 18(1), 5062.CrossRefGoogle Scholar
Graham, N.L., Emery, T., Hodges, J.R. (2004). Distinctive cognitive profiles in Alzheimer's disease and subcortical vascular dementia. Journal of Neurology, Neurosurgery, and Psychiatry, 75, 6171.Google ScholarPubMed
Helzner, E.P., Scarmeas, N., Cosentino, S., Portet, F., Stern, Y. (2007). Leisure activity and cognitive decline in incident Alzheimer disease. Archives of Neurology, 64(12), 17491754.CrossRefGoogle ScholarPubMed
Jellinger, K.A. (2003). Is Alzheimer's disease a vascular disorder? Journal of Alzheimer's Disease, 5, 247250.CrossRefGoogle ScholarPubMed
Jellinger, K.A., Attems, J. (2003). Incidence of cerebrovascular lesions in Alzheimer's disease: A postmortem study. Acta Neuropathologica, 105, 1417.CrossRefGoogle ScholarPubMed
Jokinen, H., Kalska, H., Mantyla, R., Pohjasvaara, T., Ylikoski, R., Hietanen, M., Erkinjuntti, T. (2006). Cognitive profile of subcortical ischaemic vascular disease. Journal of Neurology, Neurosurgery, and Psychiatry, 77, 2833.CrossRefGoogle ScholarPubMed
Jokinen, H., Kalska, H., Mantyla, R., Ylikoski, R., Heitanen, M., Pohjasvaara, T., Erkinjuntti, T. (2005). White matter hyperintensities as a predictor of neuropsychological deficits post-stroke. Journal of Neurology, Neurosurgery, and Psychiatry, 76, 12291233.CrossRefGoogle ScholarPubMed
Kaplan, R.F., Cohen, R.A., Muscufo, N., Guttmann, C., Chasman, J., Buttaro, M., Wolfson, L. (2009). Demographic and biological influences on cognitive reserve. Journal of Clinical and Experimental Neuropsychology, 31(7), 868876. doi:10.1080/13803390802635174CrossRefGoogle ScholarPubMed
Kertesz, A., Clydesdale, S. (1994). Neuropsychological deficits in vascular dementia vs Alzheimer's disease: Frontal lobe deficits in vascular dementia. Archives of Neurology, 51, 12261231.CrossRefGoogle ScholarPubMed
Kesler, S.R., Adams, H.F., Blasey, C.M., Bigler, E.D. (2003). Premorbid intellectual functioning, education, and brain size in traumatic brain injury: An investigation of the cognitive reserve hypothesis. Applied Neuropsychology, 10(3), 153162.CrossRefGoogle ScholarPubMed
McDowell, I., Xi, G., Lindsay, J., Teirney, M. (2007). Mapping the connections between education and dementia. Journal of Clinical and Experimental Neuropsychology, 29(2), 127141.CrossRefGoogle ScholarPubMed
McGurn, B., Deary, I.J., Starr, J.M. (2008). Childhood cognitive ability and risk of late-onset Alzheimer and vascular dementia. Neurology, 71, 10511056.CrossRefGoogle ScholarPubMed
Mortimer, J.A., Snowdon, D.A., Markesbery, W.R. (2003). Head circumference, education and risk of dementia: Findings from the Nun Study. Journal of Clinical and Experimental Neuropsychology, 25(5), 671679.CrossRefGoogle ScholarPubMed
Nebes, R.D., Meltzer, C.C., Whyte, E.M., Scanlon, J.M., Halligan, E.M., Saxton, J.A., DeKosky, S.T. (2006). The relation of white matter hyperintensities to cognitive performance in the normal old: Education matters. Aging, Neuropsychology, and Cognition, 13, 326340.CrossRefGoogle ScholarPubMed
Paul, R.H., Garrett, K., Cohen, R. (2003). Vascular dementia: A diagnostic conundrum for the clinical neuropsychologist. Applied Neuropsychology, 10(3), 129136.CrossRefGoogle ScholarPubMed
Paul, R.H., Haque, O., Gunstad, J., Tate, D.F., Grieve, S.M., Hoth, K., Gordon, E. (2005). Subcortical hyperintensities impact cognitive function among a select subset of healthy elderly. Archives of Clinical Neuropsychology, 20, 697704.CrossRefGoogle ScholarPubMed
Riley, K.P., Snowdon, D.A., Desrosiers, M.F., Markesbery, W.R. (2005). Early life linguistic ability, late life cognitive function, and neuropathology: Findings from the Nun Study. Neurobiology of Aging, 26, 341347.CrossRefGoogle ScholarPubMed
Roman, G.C., Erkinjuntti, T., Wallin, A., Pantoni, L., Chui, H.C. (2002). Subcortical ischaeic vascular dementia. Lancet Neurology, 1, 426436.CrossRefGoogle ScholarPubMed
Roselli, F., Tartaglione, B., Federico, F., Lepore, V., Defazio, G., Livrea, P. (2009). Rate of MMSE score change in Alzheimer's disease: Influence of education and vascular risk factors. Clinical Neurology and Neurosurgery, 111, 327330.CrossRefGoogle ScholarPubMed
Scarmeas, N., Albert, S.M., Manly, J.J., Stern, Y. (2006). Education and rates of cognitive decline in incident Alzheimer's disease. Journal of Neurology, Neurosurgery, and Psychiatry, 77, 308316.CrossRefGoogle ScholarPubMed
Scarmeas, N., Stern, Y. (2003). Cognitive reserve and lifestyle. Journal of Clinical and Experimental Neuropsychology, 25(5), 625633.CrossRefGoogle ScholarPubMed
Schmidt, R., Fazekas, F., Offenbacher, H., Dusek, T., Zach, E., Grieshofer, R.P., Lechner, H. (1993). Neuropsychological correlates of MRI white matter hyperintensities: A study of 150 normal volunteers. Neurology, 43, 24902494.CrossRefGoogle ScholarPubMed
Snowdon, D.A., Kemper, S.J., Mortimer, J.A., Greiner, L.H., Wekstein, D.R., Markesbery, W.R. (1996). Linguistic ability in early life and cognitive function and Alzheimer's disease in late life: Findings from the Nun Study. Journal of the American Medical Association, 275(7), 528532.CrossRefGoogle ScholarPubMed
Sole-Padulles, C., Bartres-Faz, D., Junque, C., Vendrell, P., Rami, L., Clemente, I.C., Molinuevo, J.L. (2009). Brain structure and function related to cognitive reserve variables in normal aging, mild cognitive impairment and Alzheimer's disease. Neurobiology of Aging, 30, 11141124.CrossRefGoogle ScholarPubMed
Stern, Y. (2002). What is cognitive reserve? Theory and research application of the reserve concept. Journal of the International Neuropsychological Society, 8, 448460.CrossRefGoogle ScholarPubMed
Stern, Y. (2006). Cognitive reserve and Alzheimer disease. Alzheimer Disease and Associated Disorders, 20, S69S74.CrossRefGoogle ScholarPubMed
Stern, Y. (2009). Cognitive reserve. Neuropsychologia, 47, 20152028.CrossRefGoogle ScholarPubMed
Stern, Y., Habeck, C., Moeller, J., Scarmeas, N., Anderson, K.E., Hilton, H.J., van Heertum, R. (2005). Brain networks associated with cognitive reserve in healthy young and old adults. Cerebral Cortex, 15, 394402. doi:10.1093/cercor/bhh142CrossRefGoogle ScholarPubMed
Tierney, M.C., Black, S.E., Szalat, J.P., Snow, G., Fisher, R.H., Nadon, G., Chui, H. (2001). Recognition memory and verbal fluency differentiate probable Alzheimer's disease from subcortical ischemic vascular dementia. Archives of Neurology, 58, 16541659.CrossRefGoogle ScholarPubMed
Traykov, L., Baudic, S., Raoux, N., Latour, F., Rieu, D., Smagghe, A., Rigaud, A.S. (2005). Patterns of memory impairment and perseverative behavior discriminate early Alzheimer's disease from subcortical vascular dementia. Journal of the Neurological Sciences, 229–230, 7579.CrossRefGoogle ScholarPubMed
Wallin, A. (1998). The overlap between Alzheimer's disease and vascular dementia: The role of white matter changes. Dementia and Geriatric Cognitive Disorders, 9(Suppl. 1), 3035.CrossRefGoogle ScholarPubMed
Warlaw, J.M., Sandercock, P.A.G., Dennis, M.S., Starr, J. (2003). Is breakdown of the blood-brain barrier responsible for lacunar stroke, leukaraiosis, and dementia? Stroke, 34(3), 806812.CrossRefGoogle Scholar
Wilson, R.S., Hebert, L.E., Scherr, P.A., Barnes, L.L., Mendes de Leon, C.F., Evans, D.A. (2009). Educational attainment and cognitive decline in old age. Neurology, 72, 460465.CrossRefGoogle ScholarPubMed
Wolf, H., Julin, P., Gertz, H.J., Winblad, B., Wahlund, L.O. (2004). Intracranial volume in mild cognitive impairment, Alzheimer's disease and vascular dementia: Evidence for brain reserve? International Journal of Geriatric Psychiatry, 19, 9951007.CrossRefGoogle ScholarPubMed