Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T01:57:42.237Z Has data issue: false hasContentIssue false

Fifty Years of Prefrontal Cortex Research: Impact on Assessment

Published online by Cambridge University Press:  04 December 2017

Paul W. Burgess
Affiliation:
Institute of Cognitive Neuroscience, University College London
Donald T. Stuss*
Affiliation:
University of Toronto, Toronto, OntarioCanada Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada Rotman Research Institute of Baycrest, Toronto, Ontario, Canada
*
Correspondence and reprint requests to: Donald T. Stuss, Sunnybrook Health Sciences Centre, 2075 Bayview Ave. Toronto, ON M4N 3M5. E-mail: donaldt@stussassoc.ca

Abstract

Our knowledge of the functions of the prefrontal cortex, often called executive, supervisory, or control, has been transformed over the past 50 years. After operationally defining terms for clarification, we review the impact of advances in functional, structural, and theoretical levels of understanding upon neuropsychological assessment practice as a means of identifying 11 principles/challenges relating to assessment of executive function. Three of these were already known 50 years ago, and 8 have been confirmed or emerged since. Key themes over this period have been the emergence of the use of naturalistic tests to address issues of “ecological validity”; discovery of the complexity of the frontal lobe control system; invention of new tests for clinical use; development of key theoretical frameworks that address the issue of the role of prefrontal cortex systems in the organization of human cognition; the move toward considering brain systems rather than brain regions; the advent of functional neuroimaging, and its emerging integration into clinical practice. Despite these huge advances, however, practicing neuropsychologists are still desperately in need of new ways of measuring executive function. We discuss pathways by which this might happen, including decoupling the two levels of explanation (information processing; brain structure) and integrating very recent technological advances into the neuropsychologist’s toolbox. (JINS, 2017, 23, 755–767)

Type
Section 1 – Brain Systems and Assessment
Copyright
Copyright © The International Neuropsychological Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alexander, G.E., DeLong, M.R., & Strick, P.I. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9, 357381.Google Scholar
Alexander, M.P., Stuss, D.T., Picton, T., Shallice, T., & Gillingham, S. (2007). Regional frontal injuries cause distinct impairments in cognitive control. Neurology, 68, 15151523.Google Scholar
Alexander, M.P., Stuss, D.T., & Fansabedian, N. (2003). California verbal learning test: Performance by patients with focal frontal and non-frontal lesions. Brain, 126, 14931503.Google Scholar
Alexander, M.P., Stuss, D.T., Shallice, T., Picton, T.W., & Gillingham, S. (2005). Impaired concentration due to frontal lobe damage from two distinct lesion sites. Neurology, 65, 572579.Google Scholar
Anderson, C.V., Bigler, E.D., & Blatter, D.D. (1995). Frontal lobe lesions, diffuse damage, and neuropsychological functioning in traumatic brain-injured patients. Journal of Clinical and Experimental Neuropsychology, 17(6), 900908.Google Scholar
Baddeley, A.D. (1986). Working memory. Oxford: Clarendon Press.Google Scholar
Baddeley, A., Della Sala, S., Papagno, C., & Spinnler, H. (1997). Dual-task performance in dysexecutive and nondysexecutive patients with a frontal lesion. Neuropsychology, 11, 187194.Google Scholar
Badre, D. (2008). Cognitive control, hierarchy, and the rostro-caudal organization of the frontal lobes. Trends in Cognitive Sciences, 12, 193200. doi: 10.1016/j.tics.2008.02.004 CrossRefGoogle ScholarPubMed
Bechara, A., Damasio, H., Tranel, D., & Damasio, A.R. (2005). The Iowa Gambling Task and the somatic marker hypothesis: Some questions and answers. Trends in Cognitive Sciences, 9, 159162.Google Scholar
Benoit, R.G., Gilbert, S.J., Volle, E., & Burgess, P.W. (2010). When I think about me and simulate you: Medial rostral prefrontal cortex and self-referential processes. NeuroImage, 50, 13401349.Google Scholar
Benton, A.L. (1991). The prefrontal region: Its early history. In H.S. Levin, H.M. Eisenberg & A.L. Benton (Eds.), Frontal lobe function and dysfunction (pp 334). New York: Oxford University Press.Google Scholar
Burgess, P.W. (1997). Theory and methodology in executive function research. In P. Rabbitt (Ed.), Methodology of frontal and executive function (pp 81116). Hove, UK: Psychology Press.Google Scholar
Burgess, P.W., Alderman, N., Evans, J., Emslie, H., & Wilson, B.A. (1998). The ecological validity of tests of executive function. Journal of the International Neuropsychological Society, 4, 547558.Google Scholar
Burgess, P.W., Alderman, N., Volle, E., Benoit, R.G., & Gilbert, S.J. (2009). Mesulam’s frontal lobe mystery re-examined. Restorative Neurology and Neuroscience, 27, 493506.Google Scholar
Burgess, P.W., Alderman, N., Forbes, C., Costello, A., Coates, L., Dawson, D.R., & Channon, S. (2006). The case for the development and use of “ecologically valid” measures of executive function in experimental and clinical neuropsychology. Journal of the International Neuropsychological Society, 12, 116.Google Scholar
Burgess, P.W., Dumontheil, I., & Gilbert, S.J. (2007). The gateway hypothesis of rostral prefrontal cortex (area 10) function. Trends in Cognitive Sciences, 11, 290298.Google Scholar
Burgess, P.W., Gonen-Yaacovi, G., & Volle, E. (2011). Functional neuroimaging studies of prospective memory: What have we learnt so far? Neuropsychologia, 49, 22462257.CrossRefGoogle ScholarPubMed
Burgess, P.W., Gonen-Yaacovi, G., & Volle, E. (2012). Rostral prefrontal cortex: What neuroimaging can learn from human neuropsychology. In B. Levine & F.I.M. Craik (Eds.), Mind and the frontal lobes: Cognition, behavior, and brain imaging (pp. 4792). New York: Oxford University Press.Google Scholar
Burgess, P.W., & Shallice, T. (1996a). Bizarre responses, rule detection and frontal lobe lesions. Cortex, 32, 241259.Google Scholar
Burgess, P.W., & Shallice, T. (1996b). Response suppression, initiation and strategy use following frontal lobe lesions. Neuropsychologia, 34, 263273.Google Scholar
Burgess, P.W., & Shallice, T. (1997). The Hayling and Brixton tests. Bury St. Edmunds, UK: Thames Valley Test Company.Google Scholar
Burgess, P.W., Veitch, E., Costello, A., and Shallice, T. (2000). The cognitive and neuroanatomical correlates of multitasking. Neuropsychologia, 38, 848863.Google Scholar
Burgess, P.W., & Wu, H.-C. (2013). Rostral prefrontal cortex (Brodmann Area 10): Metacognition in the brain. In D.T. Stuss & R.T. Knight (Eds.), Principles of frontal lobe function (2nd ed., pp. 524544). New York: Oxford University Press.Google Scholar
Catani, C., Dell’Acqua, F., Bizzi, A., Forkel, S.J., Williams, S.C., Simmons, A., Murphy, D.G., & Thiebaut de Schotten, M. (2012). Beyond cortical localization in clinico-anatomical correlation. Cortex, 48, 12621287.Google Scholar
Channon, S. (2004). Frontal lobe dysfunction and everyday problem-solving: Social and non-social contributions. Acta Psychologica, 115(2-3), 235254.Google Scholar
Christensen, A.-L. (1975). Luria’s neuropsychological investigation. New York: Spectrum Publications.Google Scholar
Cicerone, K., Levin, H., Malec, J., Stuss, D., & Whyte, J. (2006). Cognitive rehabilitation interventions for executive function: Moving from bench to bedside in patients with traumatic brain injury. Journal of Cognitive Neuroscience, 18, 12121222.Google Scholar
Clark, l, Cools, R., & Robbins, T.W. (2004). The neuropsychology of ventral prefrontal cortex: Decision-making and reversal learning. Brain and Cognition, 55, 4153.CrossRefGoogle ScholarPubMed
Craik, F.I.M., Moroz, T.M., Moscovitch, M., Stuss, D.T., Winocur, G., Tulving, E., & Kapur, S. (1999). In search of the self: A positron emission tomography study. Psychological Science, 10, 2634.Google Scholar
Cummings, J.L. (1995). Anatomic and behavioral aspects of frontal-subcortical circuits. In J. Grafman, K.J. Holyoak & F. Boller (Eds.), Structure and functions of the human prefrontal cortex, Vol. 769, pp. 113). New York: New York Academy of Sciences.Google Scholar
Damasio, A.R. (1996). The somatic marker hypothesis and the possible functions of the prefrontal cortex. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 351, 14131420.Google Scholar
Dawson, D.R., Anderson, N.D., Burgess, P.W., Cooper, E., Krpan, K.M., & Stuss, D.T. (2009). Further development of the multiple errands test: Standardized scoring, reliability, and ecological validity for the Baycrest version. Archives of Physical Medicine and Rehabilitation, 90(S1), 4151.Google Scholar
Demakis, G.J. (2004). Frontal lobe damage and tests of executive processing: A meta-analysis of the category test, Stroop test, and trail-making test. Journal of Clinical and Experimental Neuropsychology, 26, 441450.Google Scholar
D’Esposito, M., & Badre, D. (2012). Combining the insights derived from lesion and fMRI studies to understand the function of prefrontal cortex. In B. Levine & F.I.M. Craik (Eds.), Mind and the frontal lobes. Cognition, behavior, and brain imaging (pp. 93108). Oxford/New York: Oxford University Press.Google Scholar
Dubois, B., Slachevsky, A., Litvan, I., & Pillon, B. (2000). The FAB: A frontal assessment battery at bedside. Neurology, 55, 16211626.Google Scholar
Duncan, J., & Miller, E.K. (2013). Adaptive neural coding in frontal and parietal cortex. In D.T. Stuss & R.T. Knight (Eds.), Principles of frontal lobe function (2nd ed., pp. 292301). New York: Oxford University Press.Google Scholar
Duncan, J., & Owen, A.M. (2000). Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends in Neurosciences, 23, 475483.Google Scholar
Duncan, J., Parr, A., Woolgar, A., Thompson, R., Bright, P., Cox, S., & Nimmo-Smith, I. (2008). Goal neglect and Spearman’s g: Competing parts of a complex task. Journal of Experimental Psychology: General, 137, 131148.Google Scholar
Eslinger, P.J., & Damasio, A.R. (1985). Severe disturbance of higher cognition after bilateral frontal lobe ablation. Neurology, 35(12), 17311741.CrossRefGoogle ScholarPubMed
Fellows, L.K., & Farah, M.J. (2005). Different underlying impairments in decision-making following ventromedial and dorsolateral frontal lobe damage in humans. Cerebral Cortex, 15, 5863.Google Scholar
Floden, D., Alexander, M.P., Kubu, C., Katz, D., & Stuss, D.T. (2008). Impulsivity and risk-taking behavior in focal frontal lobe lesions. Neuropsychologia, 46, 213223.Google Scholar
Floden, D., Vallesi, A., & Stuss, D.T. (2011). Task context and frontal lobe activation in the Stroop task. Journal of Cognitive Neuroscience, 23, 867879.Google Scholar
Gilbert, S.J., Spengler, S., Simons, J.S.S., Steele, J.D., Lawrie, S.M., Frith, C.D., & Burgess, P.W. (2006). Functional specialisation within rostral prefrontal cortex (area 10): A meta-analysis. Journal of Cognitive Neuroscience, 18(6), 932948.Google Scholar
Gilbert, S.J., Gollwitzer, P.M., Cohen, A.L., Oettingen, G., & Burgess, P.W. (2009). Separable brain systems supporting cued versus self-initiated realization of delayed intentions. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35, 905915.Google Scholar
Gilbert, S.J., Gonen-Yaacovi, G., Benoit, R.G., Volle, E., & Burgess, P.W. (2010). Distinct functional connectivity associated with lateral versus medial rostral prefrontal cortex: A meta-analysis. NeuroImage, 53, 13591367.Google Scholar
Gioia, G.A., Isquith, P.K., Guy, S.C., & Kenworthy, L. (2000). Behavior rating inventory of executive function. Child Neuropsychology, 6, 235238. doi: 10.1076/chin.6.3.235.3152 Google Scholar
Gonen-Yaacovi, G., & Burgess, P.W. (2012). Prospective memory: The future for future intentions. Psychologica Belgica, 173(52/2-3), 173204.Google Scholar
Grace, J., & Malloy, P.F. (2001). Frontal Systems Behavior Scale (FrSBe). Lutz, FL: PAR.Google Scholar
Gratton, C., Nomura, E.M., Perez, F., & D’Esposito, M. (2012). Focal brain lesions to critical locations cause widespread disruption of the modular organization of the brain. Journal of Cognitive Neuroscience, 24, 12761285.Google Scholar
Halstead, W.C. (1947). Brain and intelligence: A quantitative study of the frontal lobes. Chicago: University of Chicago Press.Google Scholar
Harlow, J.M. (1848). Passage of an iron bar through the head. Boston Medical and Surgical Journal, 39, 389393.Google Scholar
Helfrich, R.F., & Knight, R.T. (2016). Oscillatory dynamics of prefrontal cognitive control. Trends in Cognitive Science, 20, 916930.Google Scholar
Hwang, K., Bertolero, M., Liu, W., & D’Esposito, M. (2017). The human thalamus is an integrative hub for functional brain networks. Journal of Neuroscience, 37, 55945607.Google Scholar
Knight, C., Alderman, N., & Burgess, P.W. (2002). Development of a simplified version of the multiple errands test for use in hospital settings. Neuropsychological Rehabilitation, 12, 231255.Google Scholar
Koechlin, E., Ody, C., & Kouneiher, F. (2003). The architecture of cognitive control in the human prefrontal cortex. Science, 302, 11811185.Google Scholar
Koechlin, E., & Summerfield, C. (2007). An information theoretical approach to prefrontal executive function. Trends in Cognitive Science, 11, 229235.Google Scholar
Levine, B., Robertson, I.H., Clare, L., Carter, G., Hong, J., Wilson, B.A., & Stuss, D.T. (2000). Rehabilitation of executive functioning: An experimental-clinical validation of Goal Management Training. Journal of the International Neuropsychological Society, 6, 299312.Google Scholar
Luria, A.R. (1966). Higher cortical functions in man (2nd ed.). New York: Basic Books.Google Scholar
Manly, T., Hawkins, K., Evans, J., Woldt, K., & Robertson, I.H. (2002). Rehabilitation of executive function: Facilitation of effective goal management on complex tasks using periodic auditory alerts. Neuropsychologia, 40(3), 271281.Google Scholar
Milner, B. (1963). Effects of different brain lesions on card sorting: The role of the frontal lobes. Archives of Neurology, 9, 90100.Google Scholar
Norman, D.A., & Shallice, T. (1986). Attention to action: Willed and automatic control of behavior. In R.J. Davidson, G.E. Schwartz & D. Shapiro (Eds.), Consciousness and self-regulation: Advances in research. (Vol. IV, pp. 118). New York: Plenum Press.Google Scholar
Pandya, D.N., & Barnes, C.L. (1987). Architecture and connections of the frontal lobe. In E. Perecman (Ed.), The frontal lobes revisited (pp. 4172). New York: IRBN Press.Google Scholar
Pandya, D.N., & Yeterian, E.H. (1996). Morphological correlations of human and monkey frontal lobes. In A.R. Damasio, H. Damasio & Y. Christen (Eds.), Neurobiology of decision making (pp. 1346). New York: Springer-Verlag.Google Scholar
Petrides, M. (2013). The mid-dorsolateral prefronto-parietal network and the epoptic process. In D.T. Stuss & R.T. Knight (Eds.), Principles of frontal lobe function (2nd ed., pp. 7989). New York: Oxford University Press.Google Scholar
Perrine, K. (1993). Differential aspects of conceptual processing in the Category Test and Wisconsin Card Sorting Test. Journal of Clinical and Experimental Neuropsychology Section A: Neuropsychology, Development, and Cognition, 15, 461473.Google Scholar
Picton, T.W., Stuss, D.T., Alexander, M.P., Shallice, T., Binns, M.A., & Gillingham, S. (2007). Effects of focal frontal lesions on response inhibition. Cerebral Cortex, 17, 826838.Google Scholar
Picton, T.W., Stuss, D.T., Shallice, T., Alexander, M.P., & Gillingham, S. (2006). Keeping time: Effects of focal frontal lesions. Neuropsychologia, 44, 11951209.Google Scholar
Pinti, P., Aichelburg, C., Lind, F., Power, C., Swingler, E., Merla, A., & Tachtsidis, I. (2015). Using fibreless, wearable fNIRS to monitor brain activity in real-world cognitive tasks. Journal of Visualised Experiments, 106, e53336. doi: 10.3791/53336 Google Scholar
Pribram, K.H. (1973). The primate frontal cortex-executive of the brain. In K.H. Pribram & A.R. Luria (Eds.), Psychophysiology of the Frontal Lobes (pp. 293314). New York: Academic Press.Google Scholar
Raichle, M.E. (2015). The brain’s default mode network. Annual Review of Neuroscience, 38, 433447. doi: 10.1146/annurev-neuro-071013-014030 Google Scholar
Reitan, R.M. (1958). Validity of the trail making test as an indicator of organic brain damage. Perceptual and Motor Skills, 8, 271276.Google Scholar
Reitan, R.M., & Wolfson, D. (1995). Category test and trail making test as measures of frontal lobe functions. The Clinical Neuropsychologist, 9, 5056.Google Scholar
Reverberi, C., Lavaroni, A., Giglib, G.L., & Skrapb, M. (2005). Specific impairments of rule induction in different frontal lobe subgroups. Neuropsychologia, 43, 460472.Google Scholar
Szczepanski, S.M., & Knight, R.T. (2014). Insights into human behavior from lesions to the prefrontal cortex. Neuron, 83, 10021018.Google Scholar
Shallice, T. (1982). Specific impairments of planning. Philosophical Transactions of the Royal Society B: Biological Sciences, 298, 199209.Google Scholar
Shallice, T., & Burgess, P.W. (1991). Deficits in strategy application following frontal lobe damage in man. Brain, 114, 727741.Google Scholar
Shallice, T., & Burgess, P.W. (1996). The domain of supervisory processes and temporal organisation of behaviour. Philosophical Transactions of the Royal Society of London B, 351, 14051412.Google Scholar
Shallice, T., & Cooper, R. (2011). The organisation of mind. Oxford, UK: Oxford University Press.Google Scholar
Shallice, T., & Evans, M.E. (1978). The involvement of the frontal lobes in cognitive estimation. Cortex, 14, 294303.Google Scholar
Shallice, T., Stuss, D.T., Alexander, M.P., Picton, T.W., & Derkzen, D. (2008). The multiple dimensions of sustained attention. Cortex, 44, 794805.Google Scholar
Shallice, T., Stuss, D.T., Picton, T.W., Alexander, M.P., & Gillingham, S. (2008). Multiple effects of prefrontal lesions on task-switching. Frontiers in Human Neuroscience, 1, 112.Google Scholar
Shammi, P., & Stuss, D.T. (1999). Humour appreciation: A role of the right frontal lobe. Brain, 122, 657666.Google Scholar
Spitzer, D., White, S., Mandy, W., & Burgess, P.W. (2016). Confabulation in children with autism. Cortex, 87, 8095.Google Scholar
Stuss, D.T. (2007). New approaches to prefrontal lobe testing. In B. Miller & J. Cummings (Eds.), The human frontal lobes: Functions and disorders (2nd ed., pp. 292305). New York: Guilford Press.Google Scholar
Stuss, D.T. (2011a). Functions of the frontal lobes: Relation to executive functions. Journal of the International Neuropsychological Society, 17, 17.Google Scholar
Stuss, D.T. (2011b). Traumatic brain injury: Relation to executive dysfunction and the frontal lobes. Current Opinion in Neurology, 24, 584589.Google Scholar
Stuss, D.T., & Alexander, M.P. (2007). Is there a dysexecutive syndrome? Philosophical Transactions of the Royal Society of London . Series B: Biological Sciences, 362, 901915.Google Scholar
Stuss, D.T., Alexander, M.P., Shallice, T., Picton, T.W., Binns, M.A., MacDonald, R., & Katz, D.I. (2005). Multiple frontal systems controlling response speed. Neuropsychologia, 43, 396417.Google Scholar
Stuss, D.T., Alexander, M.P., Hamer, L., Palumbo, C., Dempster, R., Binns, M., & Izukawa, D. (1998). The effects of focal anterior and posterior brain lesions on verbal fluency. Journal of the International Neuropsychological Society, 4, 265278.Google Scholar
Stuss, D.T., & Benson, D.F. (1983). Emotional concomitants of psychosurgery. In K.M. Heilman & P. Satz (Eds.), Advances in neuropsychology and behavioral neurology. Vol. 1. Neuropsychology of human emotion (pp. 111140). New York/London: The Guilford Press.Google Scholar
Stuss, D.T., & Benson, D.F. (1986). The frontal lobes. New York: Raven Press.Google Scholar
Stuss, D.T., Binns, M.A., Murphy, K.J., & Alexander, M.P. (2002). Dissociations within the anterior attentional system: Effects of task complexity and irrelevant information on reaction time speed and accuracy. Neuropsychology, 16, 500513.Google Scholar
Stuss, D.T., Bisschop, S.M., Alexander, M.P., Levine, B., Katz, D., & Izukawa, D. (2001a). The Trail Making Test: A study in focal lesion patients. Psychological Assessment, 13, 230239.Google Scholar
Stuss, D.T., Floden, D., Alexander, M.P., Levine, B., & Katz, D. (2001b). Stroop performance in focal lesion patients: Dissociation of processes and frontal lobe lesion location. Neuropsychologia, 39, 771786.CrossRefGoogle ScholarPubMed
Stuss, D.T., Gallup, G.G., & Alexander, M.P. (2001). The frontal lobes are necessary for “theory of mind”. Brain, 124, 279286.Google Scholar
Stuss, D.T., Levine, B., Alexander, M.P., Hong, J., Palumbo, C., Hamer, L., & Izukawa, D. (2000). Wisconsin Card Sorting Test performance in patients with focal frontal and posterior brain damage: Effects of lesion location and test structure on separable cognitive processes. Neuropsychologia, 38, 388402.Google Scholar
Stuss, D.T., Kaplan, E.F., Benson, D.F., Weir, W.S., Naeser, M.A., & Levine, H.L. (1981). Long-term effects of prefrontal leucotomy- An overview of neuropsychologic residuals. Journal of Clinical Neuropsychology, 3, 1332.Google Scholar
Stuss, D.T., & Knight, R.T. (Eds.). (2002). Principles of frontal lobe function. New York: Oxford University Press.Google Scholar
Stuss, D.T., & Knight, R.T. (Eds.). (2013). Principles of frontal lobe function (2nd ed). New York: Oxford University Press.Google Scholar
Stuss, D.T., Murphy, K.J., Binns, M.A., & Alexander, M.P. (2003). Staying on the job: The frontal lobes control individual performance variability. Brain, 126, 23632380.Google Scholar
Stuss, D.T., Shallice, T., Alexander, M.P., & Picton, T.W. (1995). A multidisciplinary approach to anterior attentional functions. Annals of the New York Academy of Sciences, 769, 191212.Google Scholar
Teuber, H.L. (1972). Unity and diversity of frontal lobe functions. Acta Neurobiologiae Experimentalis (Wars), 32, 615656.Google Scholar
Thiebaut de Schotten, M., Urbanski, M., Batrancourt, B., Levy, R., Dubois, B., Cerliani, L., & Volle, E. (2017). Rostro-caudal architecture of the frontal lobes in humans. Cerebral Cortex, 27, 40334047.Google Scholar
Thurstone, L.L., & Thurstone, T.G. (1938). Primary mental abilities. Chicago: University of Chicago Press.Google Scholar
Tilney, F. (1928). The brain, from ape to man. New York: Hoeber.Google Scholar
Vallesi, A., McIntosh, A.R., Alexander, M.P., & Stuss, D.T. (2009). fMRI evidence of a functional network setting the criteria for withholding a response. NeuroImage, 45, 537548.Google Scholar
Vallesi, A., McIntosh, A.R., Crescentini, C., & Stuss, D.T. (2012). fMRI investigation of speed-accuracy strategy switching. Human Brain Mapping, 33, 16771688.Google Scholar
Vallesi, A., McIntosh, A.R., Shallice, T., & Stuss, D.T. (2009). When time shapes behavior: fMRI evidence of brain correlates of temporal monitoring. Journal of Cognitive Neuroscience, 21, 11161126.Google Scholar
Volle, E., Costello, A., De L. Coates, L.M., Forbes, C., Towgood, K., Gilbert, S.J., & Burgess, P.W. (2012). Dissociation between verbal response initiation and suppression after prefrontal lesions. Cerebral Cortex, 22, 24282440. doi: 10.1093/cercor/bhr322 Google Scholar
Warrington, E.K. (2000). Homophone meaning generation: A new test of verbal switching for the detection of frontal lobe dysfunction. Journal of the International Neuropsychological Society, 6, 643648.Google Scholar
Wheeler, M.A., Stuss, D.T., & Tulving, E. (1997). Toward a theory of episodic memory: The frontal lobes and autonoetic consciousness. Psychological Bulletin, 121, 331354.Google Scholar
Wilson, B.A., Evans, J.J., Emslie, H., Alderman, N., & Burgess, P.W. (1998). The development of an ecologically valid test for assessing patients with a dysexecutive syndrome. Neuropsychological Rehabilitation, 8, 213228.Google Scholar