Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T23:51:36.209Z Has data issue: false hasContentIssue false

Covert Orienting in Three Etiologies of Congenital Hydrocephalus: The Effect of Midbrain and Posterior Fossa Dysmorphology

Published online by Cambridge University Press:  17 February 2014

Amery Treble-Barna*
Affiliation:
Department of Psychology and Texas Institute for Measurement, Evaluation, and Statistics (TIMES), University of Houston, Houston, Texas
Paulina A. Kulesz
Affiliation:
Department of Psychology and Texas Institute for Measurement, Evaluation, and Statistics (TIMES), University of Houston, Houston, Texas
Maureen Dennis
Affiliation:
Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada
Jack M. Fletcher
Affiliation:
Department of Psychology and Texas Institute for Measurement, Evaluation, and Statistics (TIMES), University of Houston, Houston, Texas
*
Correspondence and reprint requests to: Amery Treble-Barna, Department of Psychology, University of Houston Texas Medical Center Annex, 2151 West Holcombe Boulevard, Suite 222, Houston, TX 77204-5053. E-mail: atreble@uh.edu

Abstract

Covert orienting is related to the integrity of the midbrain, but the specificity of the relation is unclear. We compared covert orienting in three etiologies of congenital hydrocephalus (aqueductal stenosis [AS], Dandy-Walker malformation [DWM], and spina bifida myelomeningocele [SBM]—with and without tectal beaking) to explore the effects of midbrain and posterior fossa malformations. We hypothesized a stepwise order of group performance reflecting the degree of midbrain tectum dysmorphology. Performance on an exogenously cued covert orienting task was compared using repeated measures analysis of covariance, controlling for age. Individuals with SBM and tectal beaking demonstrated the greatest disengagement cost in the vertical plane, whereas individuals with AS performed as well as a typically developing (TD) group. Individuals with SBM but no tectal beaking and individuals with DWM showed greater disengagement costs in the vertical plane relative to the TD group, but better performance relative to the group with SBM and tectal beaking. Individuals with AS, DWM, and SBM and tectal beaking demonstrated poorer inhibition of return than TD individuals. Impairments in attentional disengagement in SBM are not attributable to the general effects of hydrocephalus, but are instead associated with specific midbrain anomalies that are part of the Chiari II malformation. (JINS, 2014, 20, 1–10)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akhtar, N., Enns, J.T. (1989). Relations between covert orienting and filtering in the development of visual attention. Journal of Experimental Child Psychology, 48, 315334. doi:10.1080/092970490911324 CrossRefGoogle ScholarPubMed
Au, K.S., Ashley-Koch, A., Northrup, H. (2010). Epidemiologic and genetic aspects of spina bifida and other neural tube defects. Developmental Disabilities Research Reviews, 16, 615. doi:10.1002/ddrr.93 Google Scholar
Barkovich, A.J., Raybaud, C. (Eds.). (2012). Pediatric neuroimaging (5th ed.). Philadelphia, PA: Lippincott Williams & Wilkins.Google Scholar
Bolduc, M.E., Limperopoulos, C. (2009). Neurodevelopmental outcomes in children with cerebellar malformations: A systematic review. Developmental Medicine and Child Neurology, 51, 256267. doi:10.1111/j.1469-8749.2008.03224.x CrossRefGoogle ScholarPubMed
Burmeister, R., Hannay, H.J., Copeland, K., Fletcher, J.M., Boudousquie, A., Dennis, M. (2005). Attention problems and executive functions in children with spina bifida and hydrocephalus. Child Neuropsychology, 11, 265283. doi:10.1080/092970490911324 Google Scholar
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Colvin, A.N., Yeates, K.O., Enrile, B.G., Coury, D.L. (2003). Motor adaptation in children with myelomeningocele: Comparison to children with adhd and healthy siblings. Journal of the International Neuropsychological Society, 9, 642652. doi:10.1017/S1355617703940045 Google Scholar
Davidovitch, M., Manning-Courtney, P., Hartmann, L.A., Watson, J., Lutkenhoff, M., Oppenheimer, S. (1999). The prevalence of attentional problems and the effect of methylphenidate in children with myelomenigocele. Pediatric Rehabilitation, 3, 2935.Google Scholar
Del Bigio, M.R. (2010). Neuropathology and structural changes in hydrocephalus. Developmental Disabilities Research Reviews, 16, 1622. doi:10.1002/ddrr.94 Google Scholar
Dennis, M., Edelstein, K., Copeland, K., Frederick, J., Francis, D.J., Hetherington, R., Fletcher, J.M. (2005a). Covert orienting to exogenous and endogenous cues in children with spina bifida. Neuropsychologia, 43, 976987. doi:10.1016/j.neuropsychologia.2004.08.012 Google Scholar
Dennis, M., Edelstein, K., Copeland, K., Frederick, J.A., Francis, D.J., Hetherington, R., Fletcher, J.M. (2005b). Space-based inhibition of return in children with spina bifida. Neuropsychology, 19, 456465. doi:10.1037/0894-4105.19.4.456 Google Scholar
Dennis, M., Edelstein, K., Frederick, J., Copeland, K., Francis, D., Blaser, S.E., Fletcher, J.M. (2005). Peripersonal spatial attention in children with spina bifida: Associations between horizontal and vertical line bisection and congenital malformations of the corpus callosum, midbrain, and posterior cortex. Neuropsychologia, 43, 20002010. doi:10.1016/j.neuropsychologia.2004.10.014 Google Scholar
Dennis, M., Hopyan, T., Juranek, J., Cirino, P.T., Hasan, K.M., Fletcher, J. (2009). Strong-meter and weak-meter rhythm identification in spina bifida meningomyelocele and volumetric parcellation of rhythm-relevant cerebellar regions. Annals of the New York Academy of Sciences, 1169, 8488. doi:10.1111/j.1749-6632.2009.04863.x Google Scholar
Dennis, M., Landry, S.H., Barnes, M.A., Fletcher, J.M. (2006). A model of neurocognitive function in spina bifida over the life span. Journal of the International Neuropsychological Society, 12, 285296. doi:10.1017/S1355617706060371 Google Scholar
Dennis, M., Salman, M.S., Juranek, J., Fletcher, J.M. (2010). Cerebellar motor function in spina bifida meningomyelocele. Cerebellum, 9, 484498. doi:10.1007/s12311-010-0191-8 Google Scholar
Dennis, M., Sinopoli, K.J., Fletcher, J.M., Schachar, R. (2008). Puppets, robots, critics, and actors within a taxonomy of attention for developmental disorders. Journal of the International Neuropsychological Society, 14, 673690. doi:10.1017/S1355617708080983 Google Scholar
Fletcher, J.M., Dennis, M. (2010). Spina bifida and hydrocephalus. In K.O. Yeates, M.D. Ris, & H.G. Taylor (Eds.), Pediatric neuropsychology: Research, theory, and practice (2nd ed., pp. 325). New York: Guilford Press.Google Scholar
Fletcher, J.M., Northrup, H., Landry, S.H., Kramer, L.A., Brandt, M.E., Dennis, M., Francis, D. (2004). Spina bifida: Genes, brain, and development. International Review of Research in Mental Retardation, 29, 63117. doi:10.1016/S0074-7750(04)29003-6 Google Scholar
Gitelman, D.R., Parrish, T.B., Friston, K.J., Mesulam, M.M. (2002). Functional anatomy of visual search: Regional segregations within the frontal eye fields and effective connectivity of the superior colliculus. Neuroimage, 15, 970982. doi:10.1006/nimg.2001.1006 CrossRefGoogle ScholarPubMed
Hampton, L.E., Fletcher, J.M., Cirino, P., Blaser, S., Kramer, L.A., Dennis, M. (2013). Neuropsychological profiles of children with aqueductal stenosis and spina bifida myelomeningocele. Journal of the International Neuropsychological Society, 19, 127136. doi:10.1017/S1355617712001117 Google Scholar
Hampton, L.E., Fletcher, J.M., Cirino, P.T., Blaser, S., Kramer, L.A., Drake, J., Dennis, M. (2011). Hydrocephalus status in spina bifida: An evaluation of variations in neuropsychological outcomes. Journal of Neurosurgery Pediatrics, 8, 289298. doi:10.3171/2011.6.PEDS10584 Google Scholar
Hirsch, J.F., Pierre-Kahn, A., Renier, D., Sainte-Rose, C., Hoppe-Hirsch, E. (1984). The dandy-walker malformation. A review of 40 cases. Journal of Neurosurgery, 61, 515522. doi:10.3171/jns.1984.61.3.0515 Google Scholar
Ignashchenkova, A., Dicke, P.W., Haarmeier, T., Thier, P. (2004). Neuron-specific contribution of the superior colliculus to overt and covert shifts of attention. Nature Neuroscience, 7, 5664. doi:10.1038/nn1169 Google Scholar
Klein, R.M. (2004). On the control of visual orienting. In M.I. Posner (Ed.), Cognitive neuroscience of attention (pp. 2944). New York: Guilford Press.Google Scholar
Lovejoy, L.P., Krauzlis, R.J. (2010). Inactivation of primate superior colliculus impairs covert selection of signals for perceptual judgments. Nature Neuroscience, 13, 261266. doi:10.1038/nn.2470 Google Scholar
Menkes, J.H., Sarnat, H.B., Maria, B.L. (2006). Child neurology (7th ed.). Philadelphia: Lippincott, Williams, Wilkins.Google Scholar
Moffitt, K.B., Abiri, O.O., Scheuerle, A.E., Langlois, P.H. (2011). Descriptive epidemiology of selected heritable birth defects in Texas. Birth Defects Research. Part A, Clinical and Molecular Teratology, 91, 990994. doi:10.1002/bdra.22859 Google Scholar
Nummela, S.U., Krauzlis, R.J. (2010). Inactivation of primate superior colliculus biases target choice for smooth pursuit, saccades, and button press responses. Journal of Neurophysiology, 104, 15381548. doi:10.1152/jn.00406.2010 Google Scholar
Parisi, M.A., Dobyns, W.B. (2003). Human malformations of the midbrain and hindbrain: Review and proposed classification scheme. Molecular Genetics and Metabolism, 80, 3653. doi:10.1016/j.ymgme.2003.08.010 Google Scholar
Posner, M.I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32, 325. doi:10.1080/00335558008248231 CrossRefGoogle ScholarPubMed
Posner, M.I., Petersen, S.E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 2542. doi:10.1146/annurev.ne.13.030190.000325 Google Scholar
Posner, M.I., Rafal, R.D., Choate, L.S., Vaughn, J. (1985). Inhibition of return: Neural basis and function. Cognitive Neuropsychology, 2, 211228. doi:10.1080/02643298508252866 Google Scholar
Posner, M.I., Walker, J.A., Friedrich, F.J., Rafal, R.D. (1984). Effects of parietal injury on covert orienting of attention. Journal of Neuroscience, 4, 18631874.Google Scholar
Rafal, R.D., Posner, M.I., Friedman, J.H., Inhoff, A.W., Bernstein, E. (1988). Orienting of visual attention in progressive supranuclear palsy. Brain, 111(Pt 2), 267280.Google Scholar
Raybaud, C., Miller, E. (2008). Radiological evaluation of myelomeningocele – Chiari II malformation. In M. Ozek, G. Cinalli, & W. Maixner (Eds.), Spina bifida: Management and outcome (pp. 111142). Milan: Springer.CrossRefGoogle Scholar
Swartwout, M.D., Cirino, P.T., Hampson, A.W., Fletcher, J.M., Brandt, M.E., Dennis, M. (2008). Sustained attention in children with two etiologies of early hydrocephalus. Neuropsychology, 22, 765775. doi:10.1037/a0013373 Google Scholar
Taylor, H.B., Landry, S.H., Barnes, M., Swank, P., Cohen, L.B., Fletcher, J. (2010). Early information processing among infants with and without spina bifida. Infant Behavior and Development, 33, 365372. doi:10.1016/j.infbeh.2010.03.005 Google Scholar
Thorndike, R., Hagen, E., Sattler, J. (1986). The stanford–binet intelligence scale (Fourth ed.). Itasca, IL: Riverside.Google Scholar
Treble, A., Juranek, J., Stuebing, K.K., Dennis, M., Fletcher, J.M. (2012). Functional significance of atypical cortical organization in spina bifida myelomeningocele: Relations of cortical thickness and gyrification with IQ and fine motor dexterity. Cerebral Cortex, 23, 23572369. doi:10.1093/cercor/bhs226 Google Scholar
Williams, V.J., Juranek, J., Stuebing, K.K., Cirino, P., Dennis, M., Fletcher, J.M. (2013). Examination of frontal and parietal tectocortical attention pathways in spina bifida meningomyelocele using probabilistic diffusion tractography. Brain Connectivity, 3, 512522. doi:10.1089/brain.2013.0171 Google Scholar