Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T02:22:03.716Z Has data issue: false hasContentIssue false

Problem-solving abilities and frontal lobe cortical thickness in healthy aging and mild cognitive impairment

Published online by Cambridge University Press:  05 July 2010

G. SÁNCHEZ-BENAVIDES
Affiliation:
Group of Behavioral Neurology, Neuropsychopharmacology Program, Institut Municipal d’Investigació Mèdica, Barcelona, Spain Universitat Autònoma de Barcelona, Barcelona, Spain
B. GÓMEZ-ANSÓN
Affiliation:
Neuroradiology Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
M. QUINTANA
Affiliation:
Group of Behavioral Neurology, Neuropsychopharmacology Program, Institut Municipal d’Investigació Mèdica, Barcelona, Spain
Y. VIVES
Affiliation:
Port d’Informació Cientifica, Universitat Autònoma de Barcelona, Barcelona, Spain
R.M. MANERO
Affiliation:
Group of Behavioral Neurology, Neuropsychopharmacology Program, Institut Municipal d’Investigació Mèdica, Barcelona, Spain Section of Behavioral Neurology and Dementias, Hospital del Mar, Institut Municipal d’Assistència Sanitària, Barcelona, Spain
A. SAINZ
Affiliation:
Port d’Informació Cientifica, Universitat Autònoma de Barcelona, Barcelona, Spain
R. BLESA
Affiliation:
Service of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
J.L. MOLINUEVO
Affiliation:
Service of Neurology, Hospital Clínic, Barcelona, Spain
J. PEÑA-CASANOVA*
Affiliation:
Group of Behavioral Neurology, Neuropsychopharmacology Program, Institut Municipal d’Investigació Mèdica, Barcelona, Spain Section of Behavioral Neurology and Dementias, Hospital del Mar, Institut Municipal d’Assistència Sanitària, Barcelona, Spain
*
*Correspondence and reprint requests to: Jordi Peña-Casanova, Institut Municipal d’Investigació Mèdica Biomedical Research Park Building, Dr. Aiguader Street 88, 08003 Barcelona, Spain. E-mail: jpcasanova@parcdesalutmar.cat

Abstract

Mild cognitive impairment (MCI) is considered a transitional state between normal aging and Alzheimer disease. Most MCI subjects present disturbances in multiple neuropsychological domains, including executive function. This study aimed at exploring frontal lobe cortical thinning in MCI and healthy controls, and its relationship with problem-solving abilities. Twenty-three MCI patients and 30 elderly controls underwent MRI and neuropsychological assessment. Cortical thickness was measured by means of FreeSurfer. Problem-solving was assessed by means of the Tower of London (TOL) task. MCI showed a global thinning of the cortex. With regard to specific regions of interest, a thinning in the left frontal lobe and the bilateral posterior cingulate gyri was found. Partial correlations, after controlling for age, education, Mini-Mental Status Examination, and non-frontal mean thickness revealed negative significant correlations between frontal lobe thickness and executive outcomes in the control group. This counterintuitive relationship was not observed in the MCI group, suggesting that the frontal cortical atrophy observed in MCI entails a specific pathology-related relationship with high-level executive outcomes that is qualitatively different from that observed in healthy aging. (JINS, 2010, 16, 836–845.)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albert, M.S., Moss, M.B., Tanzi, R., & Jones, K. (2001). Preclinical prediction of AD using neuropsychological tests. Journal of the International Neuropsychological Society, 7, 631639.CrossRefGoogle ScholarPubMed
Bakkour, A., Morris, J.C., & Dickerson, B.C. (2009). The cortical signature of prodromal AD: Regional thinning predicts mild AD dementia. Neurology, 72, 10481055.CrossRefGoogle ScholarPubMed
Baxter, L.C., Sparks, D.L., Johnson, S.C., Lenoski, B., Lopez, J.E., Connor, D.J., et al. . (2006). Relationship of cognitive measures and gray and white matter in Alzheimer’s disease. Journal of Alzheimer’s Disease, 9, 253260.CrossRefGoogle ScholarPubMed
Blesa, R., Pujol, M., Aguilar, M., Santacruz, P., Bertran-Serra, I., Hernandez, G., et al. . (2001). Clinical validity of the ‘mini-mental state’ for Spanish speaking communities. Neuropsychologia, 39, 11501157.CrossRefGoogle ScholarPubMed
Bopp, K.L., & Verhaeghen, P. (2005). Aging and verbal memory span: A meta-analysis. The Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 60, P223P233.CrossRefGoogle ScholarPubMed
Bozzali, M., Filippi, M., Magnani, G., Cercignani, M., Franceschi, M., Schiatti, E., et al. . (2006). The contribution of voxel-based morphometry in staging patients with mild cognitive impairment. Neurology, 67, 453460.CrossRefGoogle ScholarPubMed
Brandt, J., Aretouli, E., Neijstrom, E., Samek, J., Manning, K., Albert, M.S., et al. . (2009). Selectivity of executive function deficits in mild cognitive impairment. Neuropsychology, 23, 607618.CrossRefGoogle ScholarPubMed
Buschke, H., Kuslansky, G., Katz, M., Stewart, W.F., Sliwinski, M.J., Eckholdt, H.M., et al. . (1999). Screening for dementia with the memory impairment screen. Neurology, 52, 231238.CrossRefGoogle ScholarPubMed
Chang, Y.L., Jacobson, M.W., Fennema-Notestine, C., Hagler, D.J. Jr., Jennings, R.G., Dale, A.M., et al. . (2010). Level of executive function influences verbal memory in amnestic mild cognitive impairment and predicts prefrontal and posterior cingulate thickness. Cerebral Cortex, 20, 13051313.CrossRefGoogle ScholarPubMed
Courchesne, E., Chisum, H.J., Townsend, J., Cowles, A., Covington, J., Egaas, B., et al. . (2000). Normal brain development and aging: Quantitative analysis at in vivo MR imaging in healthy volunteers. Radiology, 216, 672682.CrossRefGoogle ScholarPubMed
Crowell, T.A., Luis, C.A., Vanderploeg, R.D., Schinka, J.A., & Mullan, M. (2002). Memory patterns and executive functioning in mild cognitive impairment and Alzheimer’s disease. Aging Neuropsychology and Cognition, 9, 288297.CrossRefGoogle Scholar
Cullbertson, W.C., & Zillmer, E.A. (2001). Tower of London Drexel University (TOLDX). Technical manual. Toronto: Multi-Health Systems Inc.Google Scholar
de Jong, L.W., van der Hiele, K., Veer, I.M., Houwing, J.J., Westendorp, R.G., Bollen, E.L., et al. . (2008). Strongly reduced volumes of putamen and thalamus in Alzheimer’s disease: An MRI study. Brain, 131, 32773285.CrossRefGoogle ScholarPubMed
Desikan, R.S., Segonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C., Blacker, D., et al. . (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage, 31, 968980.CrossRefGoogle ScholarPubMed
Dickerson, B.C., Fenstermacher, E., Salat, D.H., Wolk, D.A., Maguire, R.P., Desikan, R., et al. . (2008). Detection of cortical thickness correlates of cognitive performance: Reliability across MRI scan sessions, scanners, and field strengths. Neuroimage, 39, 1018.CrossRefGoogle ScholarPubMed
Duarte, A., Hayasaka, S., Du, A., Schuff, N., Jahng, G.H., Kramer, J., et al. . (2006). Volumetric correlates of memory and executive function in normal elderly, mild cognitive impairment and Alzheimer’s disease. Neuroscience Letters, 406, 6065.CrossRefGoogle ScholarPubMed
Espinosa, A., Alegret, M., Boada, M., Vinyes, G., Valero, S., Martinez-Lage, P., et al. . (2009). Ecological assessment of executive functions in mild cognitive impairment and mild Alzheimer’s disease. Journal of the International Neuropsychological Society, 15, 751757.CrossRefGoogle ScholarPubMed
Fennema-Notestine, C., McEvoy, L.K., Hagler, D.J. Jr., Jacobson, M.W., Dale, A.M., & The Alzheimer’s Disease Neuroimaging Initiative. (2009). Structural neuroimaging in the detection and prognosis of pre-clinical and early AD. Behavioural Neurology, 21, 312.CrossRefGoogle ScholarPubMed
Fischl, B., & Dale, A.M. (2000). Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proceedings of the National Academy of Sciences of the United States of America, 97, 1105011055.CrossRefGoogle ScholarPubMed
Fischl, B., van der Kouwe, A., Destrieux, C., Halgren, E., Segonne, F., Salat, D.H., et al. . (2004). Automatically parcellating the human cerebral cortex. Cerebral Cortex, 14, 1122.CrossRefGoogle ScholarPubMed
Folstein, M.F., Folstein, S.E., & McHugh, P.R. (1975). “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189198.CrossRefGoogle ScholarPubMed
Foster, J.K., Meikle, A., Goodson, G., Mayes, A.R., Howard, M., Sunram, S.I., et al. . (1999). The hippocampus and delayed recall: Bigger is not necessarily better? Memory, 7, 715732.CrossRefGoogle Scholar
Gunning-Dixon, F.M., & Raz, N. (2003). Neuroanatomical correlates of selected executive functions in middle-aged and older adults: A prospective MRI study. Neuropsychologia, 41, 19291941.CrossRefGoogle ScholarPubMed
Guo, X., Wang, Z., Li, K., Li, Z., Qi, Z., Jin, Z., et al. . (2010). Voxel-based assessment of gray and white matter volumes in Alzheimer’s disease. Neuroscience Letters, 468, 146150.CrossRefGoogle ScholarPubMed
Im, K., Lee, J.M., Seo, S.W., Yoon, U., Kim, S.T., Kim, Y.H., et al. . (2008). Variations in cortical thickness with dementia severity in Alzheimer’s disease. Neuroscience Letters, 436, 227231.CrossRefGoogle ScholarPubMed
Julkunen, V., Niskanen, E., Muehlboeck, S., Pihlajamaki, M., Kononen, M., Hallikainen, M., et al. . (2009). Cortical thickness analysis to detect progressive mild cognitive impairment: A reference to Alzheimer’s disease. Dementia and Geriatric Cognitive Disorders, 28, 404412.CrossRefGoogle ScholarPubMed
Karas, G.B., Burton, E.J., Rombouts, S.A., van Schijndel, R.A., O’Brien, J.T., Scheltens, P., et al. . (2003). A comprehensive study of gray matter loss in patients with Alzheimer’s disease using optimized voxel-based morphometry. Neuroimage, 18, 895907.CrossRefGoogle ScholarPubMed
Karas, G.B., Scheltens, P., Rombouts, S.A., Visser, P.J., van Schijndel, R.A., Fox, N.C., et al. . (2004). Global and local gray matter loss in mild cognitive impairment and Alzheimer’s disease. Neuroimage, 23, 708716.CrossRefGoogle ScholarPubMed
Kramer, J.H., Nelson, A., Johnson, J.K., Yaffe, K., Glenn, S., Rosen, H.J., et al. . (2006). Multiple cognitive deficits in amnestic mild cognitive impairment. Dementia and Geriatric Cognitive Disorders, 22, 306311.CrossRefGoogle ScholarPubMed
Levinoff, E.J., Saumier, D., & Chertkow, H. (2005). Focused attention deficits in patients with Alzheimer’s disease and mild cognitive impairment. Brain and Cognition, 57, 127130.CrossRefGoogle ScholarPubMed
Levy, R. (1994). Aging-associated cognitive decline. Working party of the international psychogeriatric association in collaboration with the world health organization. International Psychogeriatrics, 6, 6368.Google ScholarPubMed
Meiran, N., Gotler, A., & Perlman, A. (2001). Old age is associated with a pattern of relatively intact and relatively impaired task–set switching abilities. The Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 56, 88102.CrossRefGoogle ScholarPubMed
Minoshima, S., Giordani, B., Berent, S., Frey, K.A., Foster, N.L., & Kuhl, D.E. (1997). Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Annals of Neurology, 42, 8594.CrossRefGoogle ScholarPubMed
Morris, R.G., Miotto, E.C., Feigenbaum, J.D., Bullock, P., & Polkey, C.E. (1997). The effect of goal-subgoal conflict on planning ability after frontal- and temporal-lobe lesions in humans. Neuropsychologia, 35, 11471157.CrossRefGoogle ScholarPubMed
Mosconi, L. (2005). Brain glucose metabolism in the early and specific diagnosis of Alzheimer’s disease. FDG-PET studies in MCI and AD. European Journal of Nuclear Medicine and Molecular Imaging, 32, 486510.CrossRefGoogle ScholarPubMed
Pa, J., Boxer, A., Chao, L.L., Gazzaley, A., Freeman, K., Kramer, J., Miller, B.L., et al. . (2009). Clinical-neuroimaging characteristics of dysexecutive mild cognitive impairment. Annals of Neurology, 65, 414423.CrossRefGoogle ScholarPubMed
Peña-Casanova, J. (2005). Test Barcelona. Programa integrado de exploración neuropsicológica. Barcelona: Masson.Google Scholar
Pena-Casanova, J., Blesa, R., Aguilar, M., Gramunt-Fombuena, N., Gomez-Anson, B., Oliva, R., et al. . (2009a). Spanish multicenter normative studies (NEURONORMA project): Methods and sample characteristics. Archives of Clinical Neuropsychology, 24, 307319.CrossRefGoogle ScholarPubMed
Pena-Casanova, J., Quinones-Ubeda, S., Gramunt-Fombuena, N., Quintana, M., Aguilar, M., Molinuevo, J.L., et al. . (2009b). Spanish multicenter normative studies (NEURONORMA project): Norms for the Stroop color-word interference test and the Tower of London-Drexel. Archives of Clinical Neuropsychology, 24, 413429.CrossRefGoogle ScholarPubMed
Pengas, G., Hodges, J.R., Watson, P., & Nestor, P.J. (2010). Focal posterior cingulate atrophy in incipient Alzheimer’s disease. Neurobiology of Aging, 31, 2533.CrossRefGoogle ScholarPubMed
Phillips, L.H., Wynn, V., Gilhooly, K.J., Della Sala, S., & Logie, R.H. (1999). The role of memory in the Tower of London task. Memory, 7, 209231.CrossRefGoogle ScholarPubMed
Pihlajamaki, M., Jauhiainen, A.M., & Soininen, H. (2009). Structural and functional MRI in mild cognitive impairment. Current Alzheimer Research, 6, 179185.CrossRefGoogle ScholarPubMed
Querbes, O., Aubry, F., Pariente, J., Lotterie, J.A., Demonet, J.F., Duret, V., et al. . (2009). Early diagnosis of Alzheimer’s disease using cortical thickness: Impact of cognitive reserve. Brain, 132, 20362047.CrossRefGoogle ScholarPubMed
R Development Core Team. (2008). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
Rasquin, S.M., Lodder, J., Visser, P.J., Lousberg, R., & Verhey, F.R. (2005). Predictive accuracy of MCI subtypes for Alzheimer’s disease and vascular dementia in subjects with mild cognitive impairment: A 2-year follow-up study. Dementia and Geriatric Cognitive Disorders, 19, 113119.CrossRefGoogle ScholarPubMed
Raz, N., Gunning-Dixon, F.M., Head, D., Dupuis, J.H., & Acker, J.D. (1998). Neuroanatomical correlates of cognitive aging: Evidence from structural magnetic resonance imaging. Neuropsychology, 12, 95114.CrossRefGoogle ScholarPubMed
Raz, N., Lindenberger, U., Rodrigue, K.M., Kennedy, K.M., Head, D., Williamson, A., et al. . (2005). Regional brain changes in aging healthy adults: General trends, individual differences and modifiers. Cerebral Cortex, 15, 16761689.CrossRefGoogle ScholarPubMed
Roca, M., Parr, A., Thompson, R., Woolgar, A., Torralva, T., Antoun, N., et al. . (2010). Executive function and fluid intelligence after frontal lobe lesions. Brain, 133, 234247.CrossRefGoogle ScholarPubMed
Royall, D.R., Palmer, R., Mulroy, A.R., Polk, M.J., Roman, G.C., David, J.P., et al. . (2002). Pathological determinants of the transition to clinical dementia in Alzheimer’s disease. Experimental Aging Research, 28, 143162.CrossRefGoogle ScholarPubMed
Salat, D.H., Kaye, J.A., & Janowsky, J.S. (2002). Greater orbital prefrontal volume selectively predicts worse working memory performance in older adults. Cerebral Cortex, 12, 494505.CrossRefGoogle ScholarPubMed
Sanchez-Benavides, G., Gomez-Anson, B., Molinuevo, J.L., Blesa, R., Monte, G.C., Buschke, H., et al. . (2010). Medial temporal lobe correlates of memory screening measures in normal ageing, MCI, and AD. Journal of Geriatric Psychiatry and Neurology, 23, 100108.CrossRefGoogle ScholarPubMed
Seo, S.W., Im, K., Lee, J.M., Kim, Y.H., Kim, S.T., Kim, S.Y., et al. . (2007). Cortical thickness in single- versus multiple-domain amnestic mild cognitive impairment. Neuroimage, 36, 289297.CrossRefGoogle ScholarPubMed
Shallice, T. (1982). Specific impairments of planning. Philosophical Transactions of the Royal Society of London, 289, 199209.Google Scholar
Shallice, T., & Burgess, P.W. (1991). Deficits in strategy application following frontal lobe damage in man. Brain, 114, 727741.CrossRefGoogle ScholarPubMed
Singh, V., Chertkow, H., Lerch, J.P., Evans, A.C., Dorr, A.E., & Kabani, N.J. (2006). Spatial patterns of cortical thinning in mild cognitive impairment and Alzheimer’s disease. Brain, 129, 28852893.CrossRefGoogle ScholarPubMed
Sowell, E.R., Thompson, P.M., Leonard, C.M., Welcome, S.E., Kan, E., & Toga, A.W. (2004). Longitudinal mapping of cortical thickness and brain growth in normal children. The Journal of Neuroscience, 24, 82238231.CrossRefGoogle ScholarPubMed
Stonnington, C.M., Chu, C., Kloppel, S., Jack, C.R. Jr., Ashburner, J., Frackowiak, R.S., et al. . (2010). Predicting clinical scores from magnetic resonance scans in Alzheimer’s disease. Neuroimage, 51, 14051413.CrossRefGoogle ScholarPubMed
Tabert, M.H., Manly, J.J., Liu, X., Pelton, G.H., Rosenblum, S., Jacobs, M., et al. . (2006). Neuropsychological prediction of conversion to Alzheimer disease in patients with mild cognitive impairment. Archives of General Psychiatry, 63, 916924.CrossRefGoogle ScholarPubMed
Van Petten, C. (2004). Relationship between hippocampal volume and memory ability in healthy individuals across the lifespan: Review and meta-analysis. Neuropsychologia, 42, 13941413.CrossRefGoogle ScholarPubMed
Verhaeghen, P., & Cerella, J. (2002). Aging, executive control, and attention: A review of meta-analyses. Neuroscience and Biobehavioral Reviews, 26, 849857.CrossRefGoogle ScholarPubMed
Wadley, V.G., Okonkwo, O., Crowe, M., & Ross-Meadows, L.A. (2008). Mild cognitive impairment and everyday function: Evidence of reduced speed in performing instrumental activities of daily living. The American Journal of Geriatric Psychiatry, 16, 416424.CrossRefGoogle ScholarPubMed
Wecker, N.S., Kramer, J.H., Wisniewski, A., Delis, D.C., & Kaplan, E. (2000). Age effects on executive ability. Neuropsychology, 14, 409414.CrossRefGoogle ScholarPubMed
Welsh, M.C., Satterlee-Cartmell, T., & Stine, M. (1999). Towers of Hanoi and London: Contribution of working memory and inhibition to performance. Brain and Cognition, 41, 231242.CrossRefGoogle ScholarPubMed
Yaffe, K., Petersen, R.C., Lindquist, K., Kramer, J., & Miller, B. (2006). Subtype of mild cognitive impairment and progression to dementia and death. Dementia and Geriatric Cognitive Disorders, 22, 312319.CrossRefGoogle ScholarPubMed
Zook, N.A., Davalos, D.B., Delosh, E.L., & Davis, H.P. (2004). Working memory, inhibition, and fluid intelligence as predictors of performance on tower of Hanoi and London tasks. Brain and Cognition, 56, 286292.CrossRefGoogle Scholar