Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T05:47:48.513Z Has data issue: false hasContentIssue false

A model of neurocognitive function in spina bifida over the life span

Published online by Cambridge University Press:  22 March 2006

MAUREEN DENNIS
Affiliation:
Brain and Behavior Program, The Hospital for Sick Children and the University of Toronto, Ontario, Canada
SUSAN H. LANDRY
Affiliation:
Department of Pediatrics, University of Texas Health Science Center, Houston, Texas
MARCIA BARNES
Affiliation:
Department of Psychology, University of Guelph, Guelph, Ontario, Canada
JACK M. FLETCHER
Affiliation:
Department of Psychology, University of Houston, Houston, Texas

Abstract

Spina bifida myelomeningocele (SBM), a neural tube defect that is the product of a complex pattern of gene-environment interactions, is associated with naturally occurring, systematic variability in the neural phenotype and in environmental factors that lead to systematic variability in the cognitive phenotype. We characterize the basis for variability in the cognitive phenotype of children with SBM with reference to a model of key biological, cognitive, and environmental events unfolding over the course of development from infancy to middle age. The cognitive phenotype is not domain-specific, but represents manifestations of unobservable constructs involving associative and assembled processing, the latter directly reflecting the impact of the neural phenotype on core deficits involving movement, timing, and attention orienting. The expression of the cognitive phenotype is variable, being moderated by features of the neural phenotype involving secondary CNS insults (such as hydrocephalus) that impair assembled processing, as well as by environmental factors (such as poverty, parenting, and education) that impair associative processing. The preservation of strengths in associative processing depends in part on the severity of the CNS deficits in SBM and the impact of the environment. (JINS, 2006, 12, 285–296.)

Type
CRITICAL REVIEW
Copyright
© 2006 The International Neuropsychological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ayr, L.K., Yeates, K.O., & Enrile, B.G. (2005). Arithmetic skills and their cognitive correlates in children with acquired and congenital disorders. Journal of the International Neuropsychological Society, 11, 249262.Google Scholar
Barkovich, A.J. (2000). Pediatric neuroimaging (3rd ed.). Philadelphia, PA: Lippincott Williams and Wilkins.
Barnes, M.A. & Dennis, M. (1992). Reading in children and adolescents after early onset hydrocephalus and in their normally developing age-peers: Phonological analysis, word recognition, word comprehension, and passage comprehension skill. Journal of Pediatric Psychology, 17, 445456.CrossRefGoogle Scholar
Barnes, M.A. & Dennis, M. (1998). Discourse after early-onset hydrocephalus: Core deficits in children of average intelligence. Brain and Language, 61, 309334.CrossRefGoogle Scholar
Barnes, M.A. & Dennis, M. (2004). Reading and writing skills in young adults with spina bifida and hydrocephalus. Journal of the International Neuropsychological Society, 10, 655663.Google Scholar
Barnes, M.A., Faulkner, H., & Dennis, M. (2001). Poor reading comprehension despite fast word decoding in children with hydrocephalus. Brain and Language, 76, 3544.CrossRefGoogle Scholar
Barnes, M.A., Faulkner, H., Wilkinson, M., & Dennis, M. (2004). Meaning construction and integration in children with hydrocephalus. Brain and Language, 89, 4756.CrossRefGoogle Scholar
Barnes, M.A., Pengelly, S., Dennis, M., Wilkinson, M., Rogers, T., & Faulkner, H. (2002). Mathematics skills in good readers with hydrocephalus. Journal of the International Neuropsychology Society, 8, 7282.CrossRefGoogle Scholar
Barnes, M.A., Smith-Chant, B., & Landry, S. (2005). Number processing in neurodevelopmental disorders: Spina bifida myelomeningocele. In J. Campbell (Ed.), Handbook of mathematical cognition (pp. 299314). New York: Psychology Press.
Barnes, M.A., Wilkinson, M., Boudousquie, A., Khemani, E., Dennis, M., & Fletcher, J.M., (2006). Arithmetic processing in children with spina bifida: Calculation accuracy, strategy use, and fact retrieval fluency. Journal of Learning Disabilities, 39, 174187CrossRef
Baron, R.M. & Kenny, D.A. (1986). The moderator-mediator variable in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51, 11731182.CrossRefGoogle Scholar
Bellugi, U., Wang, P.P., & Jernigan, T.L. (1994). Williams Syndrome: An unusual neuropsychological profile. In S.H. Broman & J. Grafman (Eds.), Atypical cognitive deficits in developmental disorders: Implications for brain function (pp. 2356). Hillsdale, NJ: Erlbaum.
Berthier, N.E., Rosenstein, M.T., & Barto, A.G. (2005). Approximate control as a model for motor learning. Psychological Review, 112, 329346.CrossRefGoogle Scholar
Berman, R.A., Colby, C.L., Genovese, C.R., Voyvodic, J.T., Luna, B., Thulborn, K.R., & Sweeney, J.A. (1999). Cortical networks subserving pursuit and saccadic eye movements in humans: An fMRI study. Human Brain Mapping, 8, 209225.3.0.CO;2-0>CrossRefGoogle Scholar
Biglan, A.W. (1995). Strabismus associated with meningomyelocele. Journal of Pediatric Ophthalmology and Strabismus, 32, 309314.Google Scholar
Braddick, O., Atkinson, J., & Wattam-Bell, J. (2003). Normal and anomalous development of visual motion processing: Motion coherence and ‘dorsal-stream vulnerability.’ Neuropsychologia, 41, 17691784.CrossRefGoogle Scholar
Charney, E. (1992). Neural tube defects: Spina bifida and meningomyelocele. In M. Batshaw & Y. Perret (Eds.), Children with disabilities: A medical primer (3rd ed., pp. 471488). Baltimore, MD: Paul H. Brookes.
Colvin, A.N., Yeates, K.O., Enrile, B.G., & Coury, D.L. (2003). Motor adaptation in children with myelomeningocele: Comparison to children with ADHD and healthy siblings. Journal of the International Neuropsychological Society, 9, 642652.CrossRefGoogle Scholar
Corbetta, M. & Shulman, G.L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3, 201215.CrossRefGoogle Scholar
Crnic, L.S. & Hagerman, R. (2004). Preface: Fragile X Syndrome: Frontiers of understanding gene-brain-behavior relationships. Mental Retardation and Developmental Disabilities Research Reviews, 10, 12.CrossRefGoogle Scholar
Dennis, M. & Barnes, M.A. (2002). Math and numeracy in young adults with spina bifida and hydrocephalus. Developmental Neuropsychology, 21, 141155.CrossRefGoogle Scholar
Dennis, M., Barnes, M.A., Hetherington, R., Robitaille, J., Hopyan, T., Spiegler, B.J., & Drake, J. (2000). Retrospective and prospective memory in adult survivors of spina bifida. Journal of the International Neuropsychological Society, 6, 160.Google Scholar
Dennis, M., Edelstein, K., Copeland, K., Francis, D., Hetherington, R., Frederick, J., Blaser, S.E., Kramer, L.A., Drake, J.M., Brandt, M., & Fletcher, J.M. (2005a). Covert orienting to exogenous and endogenous cues in children with spina bifida. Neuropsychologia, 42, 976987.Google Scholar
Dennis, M., Edelstein, K., Copeland, K., Frederick, J., Francis, D.J., Hetherington, R., Blaser, S.E., Kramer, L.A., Drake, J.M., Brandt, M., & Fletcher, J.M. (2005b). Space-based inhibition of return in children with spina bifida. Neuropsychology, 19, 456465.Google Scholar
Dennis, M., Edelstein, K., Hetherington, R., Copeland, K., Frederick, J., Blaser, S.E., Drake, J.M., Brandt, M., & Fletcher, J.M. (2004). Neurobiology of timing in children with spina bifida in relation to cerebellar volume. Brain, 127, 12921301.CrossRefGoogle Scholar
Dennis, M., Fitz, C.R., Netley, C.T., Sugar, J., Harwood-Nash, D.C.F., Hendrick, E.B., Hoffman, H.J., & Humphreys, R.P. (1981). The intelligence of hydrocephalic children. Archives of Neurology, 38, 607715.CrossRefGoogle Scholar
Dennis, M., Fletcher, J.M., Rogers, S., Hetherington, R., & Francis, D. (2002). Object-based and action-based visual perception in children with spina bifida and hydrocephalus. Journal of the International Neuropsychological Society, 8, 95106.CrossRefGoogle Scholar
Dennis, M., Jacennik, B., & Barnes, M.A. (1994). The content of narrative discourse in children and adolescents after early-onset hydrocephalus and in normally-developing age peers. Brain and Language, 46, 129165.CrossRefGoogle Scholar
Dennis, M., Misakyan, T., & Schellenberg, G. (2005c). Perception of metrical structure is related to cerebellar volumes in children with spina bifida. Poster presented at The Neurosciences and Music II: From Perception to Performance, Leipzig, Germany.
Dennis, M., Rogers, T., & Barnes, M.A. (2001). Children with spina bifida perceive visual illusions but not multi-stable figures. Brain and Cognition, 46, 108113.CrossRefGoogle Scholar
Donders, J., Rourke, B.F., & Canady, A.I. (1991). Neuropsychological functioning of hydrocephalic children. Journal of Clinical and Experimental Neuropsychology, 13, 607613.CrossRefGoogle Scholar
Edelstein, K., Dennis, M., Copeland, K., Francis, D., Frederick, J., Brandt, M., Hetherington, R., & Fletcher, J.M. (2004). Motor learning in children with spina bifida: Dissociation between performance level and acquisition rate. Journal of the International Neuropsychological Society, 10, 877887.CrossRefGoogle Scholar
Fletcher, J.M., Bohan, T.P., Brandt, M.E., Kramer, L.A., Brookshire, B.L., Thorstad, K., Davidson, K.C., Francis, D.J., McCauley, S.R., & Baumgartner, J. (1996). Morphometric evaluation of the hydrocephalic brain: Relationships with cognitive abilities. Child's Nervous System, 12, 192199.CrossRefGoogle Scholar
Fletcher, J.M., Copeland, K., Frederick, J., Blaser, S.E., Kramer, L.A., Northrup, H., Hannay, H.J., Brandt, M., Francis, D.J., Villareal, G., Drake, J.M., Laurent, J.P., Townsend, I., Inwood, S., Boudousquie, A., & Dennis, M. (2005). Spinal lesion level in spina bifida meningomyelocele: A source of neural and cognitive heterogeneity. Journal of Neurosurgery: Pediatrics, 102, 268279.Google Scholar
Fletcher, J.M., Dennis, M., Northrup, H., Barnes, M.A., Hannay, H.J., Landry, S., Copeland, K., Blaser, S.E., Kramer, L.A., Brandt, M.E., & Francis, D.J. (2004). Spina bifida: Genes, brain, and development. In L. Glidden (Ed.), International Review of Research in Mental Retardation (pp. 63117). San Diego, CA: Elsevier.
Fletcher, J.M., Francis, D.J., Thompson, N.M., Brookshire, B.L., Bohan, T.P., Landry, S.H., Davidson, K.C., & Miner, M.E. (1992). Verbal and nonverbal skill discrepancies in hydrocephalic children. Journal of Clinical and Experimental Neuropsychology, 14, 593609.CrossRefGoogle Scholar
Greenley, R.N., Holmbeck, G.N., Zukerman, J., & Buck, C. (2006). Psychosocial adjustment and family relationships in children and adolescents with spina bifida. In D. Wyszynski (Ed.), Neural tube defects: From origins to treatment (pp. 307324). New York: Oxford University Press.
Grimm, R.A. (1976). Hand function and tactile perception in a sample of children with myelomeningocele. American Journal of Occupational Therapy, 30, 234240.Google Scholar
Hannay, H.J. (2000). Functioning of the corpus callosum in children with early hydrocephalus. Journal of the International Neuropsychological Society, 6, 351361.CrossRefGoogle Scholar
Hannay, H.J., Boudousquie, A., Dennis, M., Kramer, L.B., & Copeland, K. (2004). Auditory interhemispheric transfer in spina bifida meningomyelocele: The role of the level of lesion, corpus callosum, other commissures and handedness. Paper/poster presented at the annual meeting of the International Neuropsychological Society, Baltimore, MD.
Hetherington, R. & Dennis, M. (1999). Motor function profile in children with early onset hydrocephalus. Developmental Neuropsychology, 15, 2551.CrossRefGoogle Scholar
Holmbeck, G.N. (1997). Toward terminological, conceptual, and statistical clarity in the study of mediators and moderators: Examples from the child-clinical and pediatric psychology literature. Journal of Consulting and Clinical Psychology, 65, 599610.CrossRefGoogle Scholar
Hopyan, T., Schellenberg, E.G., & Dennis, M. (2003). Perception of rhythms with a strong or weak metric structure in children with spina bifida. Journal of the International Neuropsychological Society, 9, 142.Google Scholar
Hore, J., Ritchie, R., & Watts, S. (1999). Finger opening in an overarm throw is not triggered by proprioceptive feedback from elbow extension or wrist flexion. Experimental Brain Research, 125, 302312.CrossRefGoogle Scholar
Huber-Okrainec, J., Blaser, S.E., & Dennis, M. (2005). Idiom comprehension deficits in relation to corpus callosum agenesis and hypoplasia in children with spina bifida myelomeningocele. Brain and Language, 93, 349368.CrossRefGoogle Scholar
Iacoboni, M. (2001). Playing tennis with the cerebellum. Nature Neuroscience, 4, 555556.CrossRefGoogle Scholar
Ivry, R. & Keele, S. (1989). Timing functions of the cerebellum. Journal of Cognitive Neuroscience, 1, 136152.CrossRefGoogle Scholar
Ivry, R.B. & Richardson, T.C. (2002). Temporal control and coordination: The multiple timer model. Brain and Cognition, 48, 117132.CrossRefGoogle Scholar
Kirkpatrick, T.J. & Northrup, H. (2003). Genetics of neural tube defects. In Nature encyclopedia of the human genome. New York: Macmillan.
Klein, R.M. (2000). Inhibition of return. Trends in Cognitive Sciences, 4, 138147.CrossRefGoogle Scholar
Koval, V. (2004). Comprehension of facial emotion and facial display rules in children with spina bifida. Unpublished master's thesis, University of Toronto, Toronto, Ontario, Canada.
Landry, S.H. (2005). Spina bifida: School-aged cognitive abilities moderated by preschool abilities and parenting. Presentation at the Joint Mid-Year Meeting of the International Neuropsychology Society (p. 75). Dublin, Ireland.
Landry, S.H., Denson, S.E., & Swank, P.R. (1997). Effects of medical risk and socioeconomic status on the rate of change in cognitive and social development for low birth weight children. Journal of Clinical and Experimental Neuropsychology, 19, 261274.CrossRefGoogle Scholar
Landry, S.H., Garner, P., Denson, S., Swank, P., & Baldwin, C. (1993a). Low birth weight (LBW) infants' exploratory behavior at 12 and 24 months: Effects of intraventricular hemorrhage and mothers' attention directing behaviors. Research in Developmental Disabilities, 14, 237249.Google Scholar
Landry, S.H., Jordan, T., & Fletcher, J.M. (1994). Developmental outcomes for children with spina bifida and hydrocephalus. In M.B. Tramontana & S.R. Hooper (Eds.), Advances in child neuropsychology, Vol. 2 (pp. 85117). New York: Springer-Verlag.
Landry, S.H., Lomax-Bream, L., & Barnes, M. (2003). The importance of early motor and visual functioning for later cognitive skills in preschoolers with and without spina bifida. Journal of the International Neuropsychological Society, 9, 175.Google Scholar
Landry, S.H., Robinson, S.S., Copeland, D., & Garner, P.W. (1993b). Goal-directed behavior and perception of self-competence in children with spina bifida. Journal of Pediatric Psychology, 18, 389396.Google Scholar
Leigh, R.J. & Zee, D.S. (1999). The saccadic system. In The neurology of eye movements (3rd ed., pp. 90134). New York: Oxford University Press.
Leneman, M., Buchanan, L., & Rovet, J. (2001). Where and what visuospatial processing in adolescents with congenital hypothyroidism. Journal of the International Neuropsychological Society, 7, 556562.CrossRefGoogle Scholar
Lonton, A.P. (1977). Location of the myelomeningocele and its relationship to subsequent physical and intellectual abilities in children with myelomeningocele associated with hydrocephalus. Zeitschrift für Kinderheilkunde, 22, 510519.Google Scholar
Mauk, M.D., Medina, J.F., Nores, W.L., & Ohyama, T. (2000). Cerebellar function: Coordination, learning or timing? Current Biology, 10, 522525.Google Scholar
Miall, R.C., Reckess, G.Z., & Imamizu, H. (2001). The cerebellum coordinates eye and hand tracking movements. Nature Neuroscience, 4, 638644.CrossRefGoogle Scholar
Mostofsky, S.H., Bunoski, R., Morton, M., Goldberg, M.C., & Bastian, A.J. (2004). Children with autism adapt normally during a catching task requiring the cerebellum. Neurocase, 10, 6064.CrossRefGoogle Scholar
Mostofsky, S.H., Kunze, J.C., Cutting, L.E., Lederman, H.M., & Denckla, M.B. (2000). Judgment of duration in individuals with ataxia-telangiectasia. Developmental Neuropsychology, 17, 6374.CrossRefGoogle Scholar
Pisella, L., Grea, H., Tilikete, C., Vighetto, A., Desmurget, M., Rode, G., Boisson, D., & Rossetti, Y. (2000). An ‘automatic pilot’ for the hand in human posterior parietal cortex: Toward reinterpreting optic ataxia. Nature Neuroscience, 3, 729736.CrossRefGoogle Scholar
Posner, M.I. & Cohen, Y. (1984). Components of visual orienting. In H. Bouma & D.G. Bouwhuis (Eds.), Attention and performance (pp. 531556). Hillsdale, NJ: Erlbaum.
Posner, M.I. & Raichle, M.E. (1994). Images of mind. New York: Scientific American Library.
Rafal, R.D. & Henik, A. (1994). The neurology of inhibition. In D. Dagenbach & T.H. Carr (Eds.), Inhibitory processes in attention, memory, and language (pp. 151). San Diego, CA: Academic Press.
Rao, S.M., Mayer, A.R., & Harrington, D.L. (2001). The evolution of brain activation during temporal processing. Nature Neuroscience, 4, 317323.CrossRefGoogle Scholar
Richards, J.E. (2003). The development of visual attention and the brain. In M. de Haan & M.H. Johnson (Eds.), The cognitive neuroscience of development (pp. 7398). Hove, UK: Psychology Press.
Robertson, S.S., Bacher, L.F., & Huntington, N.L. (2001). The integration of body movement and attention in young infants. Psychological Science, 12, 523526.CrossRefGoogle Scholar
Robertson, S.S., Guckenheimer, J., Masnich, A.M., & Bacher, L.F. (2004). The dynamics of infant visual foraging. Developmental Science, 7, 194200.CrossRefGoogle Scholar
Rose, S.E., Chen, F., Chalk, J.B., Zelaya, F.O., Strugnell, W.E., Benson, M., Semple, J., & Doddrell, D.M. (2000). Loss of connectivity in Alzheimer's disease: An evaluation of white matter tract integrity with colour coded MR diffusion tensor imaging. Journal of Neurology, Neurosurgery & Psychiatry, 69, 528530.CrossRefGoogle Scholar
Salman, M.S., Blaser, S., Sharpe, J.A., & Dennis, M., (in press). Cerebellar vermis morphology in children with spina bifida and Arnold-Chiari Type II malformation. Child's Nervous System.
Salman, M.S., Sharpe, J.A., Eizenman, M., Lillakas, L., To, T., Westall, C., Steinbach, M., & Dennis, M. (2005a). Saccades in children with spina bifida and Arnold-Chiari Type II malformation. Neurology, 64, 20982101.Google Scholar
Salman, M.S., Sharpe, J.A., Eizenman, M., Lillakas, L., To, T., Westall, C., Steinbach, M., & Dennis, M. (2005b). Saccadic adaptation in children with spina bifida and Arnold-Chiari Type II malformation. Canadian Journal of Neurological Sciences, 32 (Suppl 1), S6566.Google Scholar
Salman, M.S., Sharpe, J.A., Lillakas, L., Steinbach, M.J., & Dennis, M. (2005c). Smooth pursuit in children with spina bifida and Chiari Type II malformation. Annals of Neurology, 58 (Suppl 9), S130.Google Scholar
Scott, M.A., Fletcher, J.M., Brookshire, B.L., Davidson, K.C., Landry, S.H., Bohan, T.C., Kramer, L.A., Brandt, M.E., & Francis, D.J. (1998). Memory functions in children with early hydrocephalus. Neuropsychology, 4, 578589.CrossRefGoogle Scholar
Shatil, E. & Share, D.L. (2003). Cognitive antecedents of early reading ability: A test of the modularity hypothesis. Journal of Experimental Child Psychology, 86, 131.CrossRefGoogle Scholar
Sharpe, J.A. (1998). Cortical control of eye movements. Current Opinion in Neurology, 11, 3138.CrossRefGoogle Scholar
Simon, T., Bearden, C.E., McGinn, D., & Zackai, E. (2005). Visuospatial and numerical cognitive deficits in children with chromosome 22q11.2 deletion syndrome. Cortex, 41, 145155.Google Scholar
Soare, P.L. & Raimondi, A.J. (1977). Intellectual and perceptual-motor characteristics of treated myelomeningocele children. American Journal of Diseases of Children, 131, 199204.Google Scholar
Thelen, E. & Smith, L.B. (1994). A dynamic systems approach to the development of cognition and action. Cambridge, MA: MIT Press.
Tompkins, C.A., Lehman Blake, M., Baumgaertner, A., & Fassbinder, W. (2001). Mechanisms of discourse comprehension impairment after right hemisphere brain damage: Suppression in inferential ambiguity resolution. Journal of Speech, Language, & Hearing Research, 44, 400415.CrossRefGoogle Scholar
Ward, L. (2004). Risk factors for Alzheimer's disease in Down Syndrome. In L.M. Glidden (Ed.), International review of research in mental retardation (vol. 29, pp. 63117). San Diego, CA: Academic Press.
Weiss, B., Dodge, K.A., Bates, J.E., & Pettit, G.S. (1992). Some consequences of early harsh discipline: Child aggression and a maladaptive social information processing style. Child Development, 63, 13211335.CrossRefGoogle Scholar
Williams, L.J., Rasmussen, S.A., Flores, A., Kirby, R.S., & Edmonds, L.D. (2005). Decline in the prevalence of spina bifida and anencephaly by race/ethnicity: 1995–2002. Pediatrics, 116, 580586.CrossRefGoogle Scholar
Wills, K.E., Holmbeck, G.N., Dillon, K., & McLone, D.G. (1990). Intelligence and achievement in children with myelomeningocele. Journal of Pediatric Psychology, 15, 161176.CrossRefGoogle Scholar
Yeates, K.W., Enrile, B.G., Loss, N., Blumenstein, E., & Delis, D.E. (1995). Verbal learning and memory in children with myelomeningocele. Journal of Pediatric Psychology, 20, 801815.CrossRefGoogle Scholar
Yeates, K.O. & Enrile, B.G. (2005). Implicit and explicit memory in children with congenital and acquired brain disorder. Neuropsychology, 19, 618628.CrossRefGoogle Scholar
Yeates, K.O., Fletcher, J.M., & Dennis, M., (in press). Spina bifida and hydrocephalus. In J.E. Morgan & J.H. Ricker (Eds.), Handbook of neuropsychology. New York: Taylor & Francis.