Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T22:45:16.391Z Has data issue: false hasContentIssue false

On Dirichlet's boundary value problem for some formally hypoelliptic differntial operators

Published online by Cambridge University Press:  09 April 2009

Niels Jacob
Affiliation:
Mathematisches Institut der UniversitätBismarckstraße 1 1/2 D-8520 Erlangen Federal Republic of Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For a class of formally hypoelliptic differential operators in divergence form we prove a generalized Gårding inequality. Using this inequality and further properties of the sesquilinear form generated by the differential operator a generalized homogeneous Dirichlet problem is treated in a suitable Hilbert space. In particular Fredholm's alternative theorem is proved to be valid.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1988

References

[1]Berezanskiï, J. M., Expansions in eigenfunctions of selfadjoint operators (Translations of Mathematical Monographs 17, Amer. Math. Soc., Providence, Rhode Island, 1968).Google Scholar
[2]Friedman, A., Partial differential equations (Holt, Rinehart and Winston, New York, 1969).Google Scholar
[3]Gårding, L., ‘Dirichlet's problem for linear elliptic partial differential equations’, Math. Scand. 1 (1953), 5572.Google Scholar
[4]Herrler, H.-J., ‘Entartete lineare elliptische Differentialgleichungen und anisotrope Sobolewräume: Existenz schwacher Lösungen’, Z. Anal. Anwendungen 5 (1986), 223236.CrossRefGoogle Scholar
[5]Hildebrandt, S., Lineare elliptische Differentialgleichungen, (Vorlesungsausarbeitung, Mainz, 1966).Google Scholar
[6]Hörmander, L., ‘On the regularity of the solutions of boundary problems’, Acta Math. 99 (1958), 225264.Google Scholar
[7]Hömander, L., The analysis of linear partial differential operators I (Die Grundlehren der mathematischen Wissenschaften 256, Springer Verlag, Berlin-Heidelberg-New York-Tokyo, 1983).Google Scholar
[8]Hörmander, L., The analysis of linear partial differential operators II (Die Grundlehren der mathematischen Wissenschaften 257, Springer Verlag, Berlin-Heidelberg-New York-Tokyo, 1983).Google Scholar
[9]Hörmander, L., The analysis of linear partial differential operators III (Die Grundlehren der mathematischen Wissenschaften 274, Springer Verlag, Berlin-Heidelberg-New York-Tokyo, 1985).Google Scholar
[10]Jacob, N., ‘On generalized Dirichlet problems’, Math. Scand. 55 (1984), 245252.Google Scholar
[11]Jacob, N. and Schomburg, B., ‘On Gårding's Inequality’, Aequationes Math. 31 (1986), 717.Google Scholar
[12]Malgrange, B., ‘Sur une classe d'opérateurs différentiels hupoelliptiques’, Bull. Soc. Math. France 85 (1957), 283306.CrossRefGoogle Scholar
[13]Melin, A., ‘Lower bounds for pseudo-differential operators’, Ark. Mat. 9 (1971), 117140.Google Scholar
[14]Nikol'skiï, S. M., ‘The first boundary problem for a general linear equation’, Soviet Math. 3 (1962), 13881390.Google Scholar
[15]Nirenberg, L., ‘On elliptic partial differential equations’, Ann. Scuola Norm. Sup. Pisa (3) 13 (1959), 115162.Google Scholar
[16]Schechter, M., ‘General boundary value problems for elliptic partial differential equations’, Comm. Pure Appl. Math. 12 (1959), 457486.Google Scholar
[17]Schechter, M., ‘Remarks on elliptic boundary value problems’, Comm. Pure Appl. Math. 12 (1959), 561578.CrossRefGoogle Scholar
[18]Schechter, M., ‘Various type of boundary conditions for elliptic equations’, Comm. Pure Appl. Math. 13 (1960), 407425.Google Scholar
[19]Schechter, M., Modern methods in partial differential equations. An introduction (McGraw-Hill International Book Company, New York, 1977).Google Scholar
[20]Stummel, F., Rand- und Eigenwertaufgabe in Sobolewschen Rāumen (Lecture Notes in Mathematics, Springer-Verlag, Berlin-Heidelberg-New York, 1969).Google Scholar
[21]Weidmann, J., Lineare Operatoren in Hilberträumen (Mathematische Leitfäden, Teubner Verlag, 1976).Google Scholar