Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T19:56:50.089Z Has data issue: false hasContentIssue false

Length theorems for the general linear group of a module over a local ring

Published online by Cambridge University Press:  09 April 2009

Erich W. Ellers
Affiliation:
Department of MathematicsUniversity of Toronto Toronto, OntarioCanadaM5S 1A1
Huberta Lausch
Affiliation:
Mathematisches Institut, Universität Würzburg, Am Hubland, D-8700 Würzburg, West Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let R be a not necessarily commutative local ring, M a free R-module, and π ∈ GL(M) such that B(π) = im(π –1)is a subspace of M. Then π = σ1…σ, where σi are simple mappings of given types, ρ is a simple mapping, B(sgr;i) and B(ρ) are subspaces and t ≤ dim B(π).

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1989

References

[1]Cohn, P. M., Free rings and their relations (Academic Press, London, New York, 1971).Google Scholar
[2]Ellers, E. W., ‘Decomposition of equiaffinities into reflections’, Geom. Dedicata 6 (1977), 297304.CrossRefGoogle Scholar
[3]Ellers, E. W., ‘Decomposition of orthogonal, symplectic, and unitary isometries into simple isometries’, Abh. Math. Sem. Univ. Hamburg 46 (1977), 97127.CrossRefGoogle Scholar
[4]Ellers, E. W., ‘Products of axial affinities and products of central collineations’, The geometric vein, Coxeter-Festschrift (pp. 465470) Springer-Verlag, New York, Heidelberg, Berlin, 1982.Google Scholar
[5]Ellers, E. W. and Frank, R., ‘Products of quasi-reflections and transvections over local rings’, J. Geom. 31 (1988), 6978.CrossRefGoogle Scholar
[6]Ellers, E. W. and Iashibashi, H., ‘Factorization of transformations over a local ring’, Linear Algebra Appl. 85 (1987), 1727.CrossRefGoogle Scholar
[7]Ellers, E. W. and Lausch, Huberta, ‘Generators for classical groups of modules over local rings’ (preprint).Google Scholar
[8]Klingenberg, W., ‘Projektive Geometrie und lineare Algebra über verallgemeinerten Bewetungsrlngen’, Algebraical and topological foundations of geometry, Proc. Colloq. Utrecht, 1959, pp. 99107 (Pergamon, Oxford, 1962).Google Scholar