Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T03:50:52.505Z Has data issue: false hasContentIssue false

Role of the image force in charging of dust grains in complex plasmas

Published online by Cambridge University Press:  23 December 2010

M. S. SODHA
Affiliation:
Disha Institute of Management and Technology, Satya Vihar, Vidhan Sabha-Chandrakhuri Marg, Mandir Hasaud, Raipur, 492101, Chattisgarh, India (msodha@rediffmail.com)
S. SRIVASTAVA
Affiliation:
Disha Institute of Management and Technology, Satya Vihar, Vidhan Sabha-Chandrakhuri Marg, Mandir Hasaud, Raipur, 492101, Chattisgarh, India (msodha@rediffmail.com)
S. K. MISHRA
Affiliation:
Department of Education Building, University of Lucknow, Lucknow, 226007, India

Abstract

This paper presents an analytical study of the impact of image force on the kinetics of an irradiated complex plasma. The formulation is based on the average charge theory and includes both the number and energy balance of electrons/ions along with the charge neutrality condition. The dependence of reduction in the potential energy surface barrier (and work function) on the number density of dust particles has been investigated and its impact on the charging of dust grains and other physical plasma parameters has been discussed. An interesting conclusion is the fact that the image force consideration leads to larger magnitude of negative charge on the dust particles and the effective work function approaches the value for plane surface with increasing size and number density of dust grains.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Sodha, M. S. and Guha, S. 1971 Physics of colloidal plasma. In: Advances in Plasma Physics, Vol. 4 (ed. Simon, A. and Thomas, W. B.). New York: Wiley, p. 219.Google Scholar
[2]Whipple, E. C. 1981 Rep. Prog. Phys. 44, 1197.Google Scholar
[3]Goertz, C. K. 1989 Rev. Geophys. 27, 271.CrossRefGoogle Scholar
[4]Goree, J. 1994 Plasma Source Sci. Tech. 3, 400.Google Scholar
[5]Tsytovich, V. N. 1997 Phys. Usp. 40, 53.Google Scholar
[6]Shukla, P. K. and Mamun, A. A. 2002 Introduction to Dusty Plasma Physics. Bristol, UK: IOP.Google Scholar
[7]Shukla, P. K. and Eliasson, B. 2009 Rev. Mod. Phys. 81, 25.Google Scholar
[8]Vladimirov, S. V. 2005 Physics and Applications of Complex Plasmas. London: Imperial College Press.CrossRefGoogle Scholar
[9]Tsytovich, V. N., Morfill, G. E., Vladimirov, S. V. and Thomas, H. M. 2008 Elementry Physics of Complex Plasmas. Berlin: Springer.Google Scholar
[10]Sodha, M. S., Dixit, A. and Srivastava, S. 2009 Phys. Rev. E 79, 046407; erratum (2009) 80, 069906 (E).CrossRefGoogle Scholar
[11]Sodha, M. S., Dixit, A., Srivastava, S., Mishra, S. K., Verma, M. P. and Bhasin, L. 2010 Plasma Source Sci. Tech. 19, 015006.Google Scholar
[12]Sodha, M. S., Mishra, S. K. and Misra, S. 2009 Phys. Plasma 16, 123701.CrossRefGoogle Scholar
[13]Sodha, M. S., Misra, S. and Mishra, S. K. 2009 Phys. Plasma 16, 123705; erratum (2010) 17, 049902.CrossRefGoogle Scholar
[14]Sodha, M. S., Mishra, S. K., Misra, S. and Srivastava, S. 2010 Phys. Plasma 17, 053706.Google Scholar
[15]Sodha, M. S. and Sharma, S. 1967 Brit. J. Appl. Phys. 18, 1127.CrossRefGoogle Scholar
[16]Draine, B. T. and Sutin, B. 1987 Astrophys. J. 320, 803.CrossRefGoogle Scholar
[17]Gurevich, A. V. 1978 Nonlinear Phenomena in the Ionosphere. New York: Springer.Google Scholar