Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T04:03:19.208Z Has data issue: false hasContentIssue false

Most probable states in magnetohydrodynamics

Published online by Cambridge University Press:  13 March 2009

David Montgomery
Affiliation:
Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742
Leaf Turner
Affiliation:
Los Alamos Scientific Laboratory, University of California, Los Alamos, New Mexico 87545
George Vahala
Affiliation:
Department of Physics, College of William and Mary Williamsburg, Virginia 23185

Abstract

We discuss the possible magnetohydrodynamic configurations that can be realized as ‘most probable’ states compatible with the existence of certain constraints. These constraints can be either experimentally imposed constraints such as constant total electric current or magnetic flux, or constants of the motion, or both.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ambrosiano, J., Vahala, G. & Montgomery, D. 1978 Bull. Am. Phys. Soc., Ser. II, 23, 811.Google Scholar
Ames, W. F. 1968 Nonlinear Ordinary Differential Equations in Transport Processes. Academic.Google Scholar
Benford, G. & Book, D. L. 1971 Advances in Plasma Physics (ed. Simon, A. and Thompson, W. B.), vol. 4, p. 125 ff. Interscience.Google Scholar
Blanc-Lapierre, A. & Fortet, R. 1965 Theory of Random Functions (transl. by Gani, J.). Gordon & Breach.Google Scholar
Book, D. L., McDonald, B. E. & Fisher, S. 1975 Phys. Rev. Lett. 34, 4.CrossRefGoogle Scholar
Field, J. J. & Papaloizou, J. C. B. 1977 J. Plasma Phys. 18, 347.CrossRefGoogle Scholar
Forsyth, A. R. 1959 Theory of Differential Equations, vol. 6. Dover.Google Scholar
Fyfe, D. & Montgomery, D. 1976 J. Plasma Phys. 16, 181.CrossRefGoogle Scholar
Fyfe, D., Joyce, G. & Montgomery, D. 1977 a J. Plasma Phys. 17, 317.CrossRefGoogle Scholar
Fyfe, D., Montgomery, D. & Joyce, G. 1977 b J. Plasma Phys. 17, 369.CrossRefGoogle Scholar
Grad, H. 1967 Phys. Fluids, 10, 137.CrossRefGoogle Scholar
Joyce, G. & Montgomery, D. 1973 J. Plasma Phys. 10, 107.CrossRefGoogle Scholar
Katz, A. 1967 Principles of Statistical Mechanics: the Information Theory Approach. Freeman.Google Scholar
Kriegsmann, G. A. & Reiss, E. L. 1978 Phys. Fluids, 21, 258.CrossRefGoogle Scholar
Lebowitz, J. 1972 Statistical Mechanics: New Concepts, New Problems, New Applications (ed. Rice, S. A., Freed, K. F. and Light, J. C.). University of Chicago Press.Google Scholar
Lundgren, T. S. & Pointin, Y. B. 1977 a J. Stat. Phys. 17, 323.CrossRefGoogle Scholar
Lundgren, T. S. & Pointin, Y. B. 1977 b Phys. Fluids, 20, 356.CrossRefGoogle Scholar
Lynden-Bell, D. 1967 Mon. Not. R. Astr. Soc. 136, 101.CrossRefGoogle Scholar
McDonald, B. E. 1974 J. Comp. Phys. 16, 360.CrossRefGoogle Scholar
Montgomery, D. & Joyce, G. 1974 Phys. Fluids, 17, 1139.CrossRefGoogle Scholar
Pugachev, V. 1965 Theory of Random Functions (transl. Blunn, O. M.). Pergamon.Google Scholar
Ter, Haar D. 1966 Elements of Thermo-statistics. Holt, Reinhart and Winston.Google Scholar
Van, Kampen N. G. 1964 Phys. Rev. A 135, 362.Google Scholar
Williamson, J. H. 1977 J. Plasma Phys. 17. 85.CrossRefGoogle Scholar