Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T22:16:35.071Z Has data issue: false hasContentIssue false

Continuous wavelet transform analysis for self-similarity properties of turbulence in magnetized DC glow discharge plasma

Published online by Cambridge University Press:  14 June 2013

BORNALI SARMA
Affiliation:
Department of Physics, VIT University, Vandalur-Kelambakkam Road, Chennai, 600 048, Tamilnadu, India (bornali.sarma@vit.ac.in)
SOURABH S. CHAUHAN
Affiliation:
Department of Physics, National Institute of Science Education and Research, IOP Campus, Bhubaneswar 751005, Orissa, India
A. M. WHARTON
Affiliation:
Plasma Physics Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700 064, West Bengal, India
A. N. SEKAR IYENGAR
Affiliation:
Plasma Physics Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700 064, West Bengal, India

Abstract

Characterization of self-similarity properties of turbulence in magnetized plasma is being carried out in DC glow discharge plasma. The time series floating potential fluctuation experimental data are acquired from the plasma by Langmuir probe. Continuous wavelet transform (CWT) analysis considering db4 mother wavelet has been applied to the experimental data and self-similarity properties are detected by evaluating the Hurst exponent from the wavelet variance plotting. From the CWT spectrum, effort is made to extract a highly correlated frequency by locating the brightest spot. Accordingly, those signals are treated for finding out correlation dimension and the Liapunov exponent so that the exact frequency responsible for the chaotic behavior could be found out.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abarbanel, H. D. I. 1996 Analysis of Observed Chaotic Data. New York, NY: Springer.CrossRefGoogle Scholar
Bale, S. D., Kellogg, P. J., Mozer, F. S., Horbury, T. S. and Reme, H. 2005 Phys. Rev. Lett. 94, 215002.CrossRefGoogle Scholar
Carroll, T. L. 1995 Am. J. Phys. 63, 377.CrossRefGoogle Scholar
Chen, F. F. 1965 Phys. Rev. Lett. 15, 381.CrossRefGoogle Scholar
Chua, L. O., Kocarev, L., Eckert, K. and Itoh, M. 1992 Int. J. Bif. Chaos 2, 705.CrossRefGoogle Scholar
Daubechies, I. 1992 Ten Lectures on Wavelets. Philadelphia, PA: SIAM.CrossRefGoogle Scholar
Horton, W. 1999 Rev. Mod. Phys. 71, 735.CrossRefGoogle Scholar
Jordan, D., Miksad, R. W. and Powers, E. 1997 J. Rev. Sci. Instrum. 68, 1484.CrossRefGoogle Scholar
Kamataki, K., Nagashima, Y., Shinohara, S., Kawai, Y., Yagi, M., Itoh, K. and Itoh, S.-I. 2007 J. Phys. Soc. Jpn. 76, 054501.CrossRefGoogle Scholar
Krommes, J. A. 2002 Phys. Rep. 360, 1.CrossRefGoogle Scholar
Kuo, F. S. and Chou, S. Y. 2001 Chin. J. Physiol. 39, 577.Google Scholar
Labit, B., Diallo, A., Fasoli, A., Furno, I., Iraji, D., Müller, S. H., Plyushchev, G., Podestà, M., Poli, F. M., Ricci, P.et al., 2007 Plasma Phys. Control. Fusion 49, B281.CrossRefGoogle Scholar
Mallat, S. 1999 A Wavelet Tour of Signal Processing, 2nd. edn.Waltham, MA: Academic Press.Google Scholar
Milano, L. J., Dasso, S., Matthaeus, W. H. and Smith, C. W. 2004 Phys. Rev. Lett. 93, 155005.CrossRefGoogle Scholar
Pace, D. C., Shi, M., Maggs, J. E., Morales, G. J. and Carter, T. A. 2008 Phys. Plasmas 15, 122304.CrossRefGoogle Scholar
Scipioni, A., Rischette, P., Bonhomme, G. and Devynck, P. 2008 Phys. Plasmas 15, 112303.CrossRefGoogle Scholar
Škoric, M. and Rajkovic, M. 2008 Contrib. Plasma Phys. 48, 37.CrossRefGoogle Scholar
Staszewski, W. J. and Worden, K. 1999 Int. J. Bif. Chaos 3, 455.CrossRefGoogle Scholar
Tchen, C. M. 1973 Plasma Phys. 15, 1193.CrossRefGoogle Scholar
Wornell, G. W. and Oppenheim, A. V. 1992 IEEE Trans. Inform. Theory 38, 785.CrossRefGoogle Scholar
Zimbardo, G. 2006 Plasma Phys. Control. Fusion 48, B295.CrossRefGoogle Scholar