Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T13:08:09.276Z Has data issue: false hasContentIssue false

Titanium disulfide thin film prepared by plasma CVDa)

Published online by Cambridge University Press:  31 January 2011

S. Kikkawa*
Affiliation:
The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567, Japan
M. Miyazaki
Affiliation:
The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567, Japan
M. Koizumi
Affiliation:
Faculty of Science and Technology, Ryukoku University, Ohtsu, Shiga 520-21, Japan
*
b)Address correspondence to this author.
Get access

Abstract

Titanium disulfide films were prepared by plasma CVD. Crystalline orientation of layered TiS2 was investigated in relation to deposition rate, film thickness, and kinds of substrate. The preferred orientation of TiS2 basal plane perpendicular to substrates was obtained on the films with their thickness of more than ca. 10 μm at the deposition rate of ca. 4 ⊠ 10−3 g/cm2·h on all kinds of substrate. This orientation resulted in a large discharge capacity in a lithium battery cathode application.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

a)

Paper paesented, in part, at the Fall Meeting of the Materials Research Society, on “Plasma Assisted Deposition of New Materials” (Symp. N), Boston, Massachusetts, 1987.

References

1Ito, T. and Nakajima, T., Philos. Mag. B 37, 773 (1978).CrossRefGoogle Scholar
2Stewart, T. B. and Fleischauer, P. D., Inorg. Chem. 21, 2426 (1982).CrossRefGoogle Scholar
3Spalvins, T., Thin Solid Films 96, 17 (1982).CrossRefGoogle Scholar
4Buck, V., Wear 91, 281 (1983).CrossRefGoogle Scholar
5Buck, V., Vacuum 36, 89 (1986).CrossRefGoogle Scholar
6Buck, V., Thin Solid Films 139, 157 (1986).CrossRefGoogle Scholar
7Fleischauer, P. D., Thin Solid Films 154, 309 (1987).CrossRefGoogle Scholar
8Lince, J. R. and Fleischauer, P. D., J. Mater. Res. 2, 827 (1987).CrossRefGoogle Scholar
9Shimanouchi, R., Yamamoto, T., Kikkawa, S., and Koizumi, M., Chem. Lett., 1323 (1985).CrossRefGoogle Scholar
10Kikkawa, S., Shimanouchi-Futagami, R., and Koizumi, M., Appl. Phys.A 49, 105 (1989).CrossRefGoogle Scholar
11Kanehori, K., Ito, Y., Kirino, F., Miyauchi, K., and Kudo, T., Solid State Ionics 18/19, 818 (1986).CrossRefGoogle Scholar
12Whittingham, M. S., Prog. Solid State Chem. 12, 41 (1978).CrossRefGoogle Scholar
13Kikkawa, S., Miyazaki, M., Liu, Y., and Kanamaru, F., Solid State Ionics (in press).Google Scholar
14Yamamoto, T., Kikkawa, S., and Koizumi, M., J. Electrochem. Soc. 131, 1343 (1984).CrossRefGoogle Scholar
15Murphy, D. W. and Trumbore, F. A., J. Cryst. Growth 39, 185 (1977).CrossRefGoogle Scholar