Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T09:47:15.588Z Has data issue: false hasContentIssue false

Structural investigation of diamond nanoplatelets grown by microwave plasma-enhanced chemical vapor deposition

Published online by Cambridge University Press:  01 March 2005

Hou-Guang Chen*
Affiliation:
Department of Materials Science and Engineering, National Chiao Tung University, Taiwan 300, Republic of China
Li Chang
Affiliation:
Department of Materials Science and Engineering, National Chiao Tung University, Taiwan 300, Republic of China
*
a)Address all correspondence to this author. e-mail: houguang.mse88g@nctu.edu.tw
Get access

Abstract

We report a unique morphology of diamond nanoplatelets synthesized by microwave plasma chemical vapor deposition on Ni coated polycrystalline diamond substrates. The diamond nanoplatelets were as thin as approximately 30 nm. Electron microscopy showed that the diamond nanoplatelets appear in a shape consisting of trapezoid and parallelogram tabular crystallites. Furthermore, the diamond nanoplatelets were single crystalline, as shown by electron diffraction. The edges of nanoplatelets were along the 〈110〉 direction with both the top and bottom tabular surfaces parallel to the {111} plane. Transmission electron microscopy revealed that the twinned planes are parallel to the platelet and side-face structure in ridge shape is bounded by {100} and {111} planes. Lateral growth of diamond nanoplatelet is believed to result from twin and ridge face structure. An oriented thin graphite layer was observed on some diamond nanoplatelets.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Isberg, J., Hammersberg, J., Johansson, E., Wikström, T., Twitchen, D.J., Whitehead, A.J., Coe, S.E. and Scarsbrook, G.A.: High carrier mobility in single-crystal plasma-deposited diamond. Science 297, 1670 (2002).CrossRefGoogle ScholarPubMed
2.Yang, W.S., Auciello, O., Butler, J.E., Cai, W., Carlisle, J.A., Gerbi, J., Gruen, D.M., Knickerbocker, T., Lasseter, T.L., Russell, J.N., Smith, L.M. and Hamers, R.J.: DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates. Nat. Mater. 1, 253 (2002).CrossRefGoogle ScholarPubMed
3.Shenderova, O., Brenner, D. and Ruoff, R.S.: Would diamond nanorods be stronger than fullerene nanotubes. Nano Lett. 3, 805 (2003).CrossRefGoogle Scholar
4.Shenderova, O.A., Zhirnov, V.V. and Brenner, D.W.: Carbon nanostructures. Crit. Rev. Solid State Mater. Sci. 27, 227 (2002).CrossRefGoogle Scholar
5.Kobashi, K., Tachibana, T., Yokota, Y., Kawakami, N., Hayashi, K. and Inoue, K.: Formation of fibrous structures on diamond by hydrogen plasma treatment under DC bias. Diamond Relat. Mater. 10, 2039 (2001).CrossRefGoogle Scholar
6.Baik, E.S., Baik, Y.J., Lee, S.W. and Jeon, D.: Fabrication of diamond nano-whiskers. Thin Solid Films 377–378, 295 (2000).CrossRefGoogle Scholar
7.Masuda, H., Yanagishita, T., Yasui, K., Nishio, K., Yagi, I., Rao, T.N. and Fujishima, A.: Synthesis of well-aligned diamond nanocylinders. Adv. Mater. 13, 247 (2001).3.0.CO;2-H>CrossRefGoogle Scholar
8.Orwa, J.O., Prawer, S., Jamieson, D.N., Peng, J.L., McCallum, J.C., Nugent, K.W., Li, Y.J., Bursill, L.A. and Withrow, S.P.: Diamond nanocrystals formed by direct implantation of fused silica with carbon. J. Appl. Phys. 90, 3007 (2001).CrossRefGoogle Scholar
9.Gruen, D.M.: Nanocrystalline diamond films. Annu. Rev. Mater. Sci. 29, 211 (1999).CrossRefGoogle Scholar
10.Philip, J., Hess, P., Feygelson, T., Butler, J.E., Chattopadhyay, S., Chen, K.H. and Chen, L.C.: Elastic, mechanical, and thermal properties of nanocrystalline diamond films. J. Appl. Phys. 93, 2164 (2003).CrossRefGoogle Scholar
11.Angus, J.C., Sunkara, M., Sahaida, S.R. and Glass, J.T.: Twinning and faceting in early stage of diamond growth by chemical vapor deposition. J. Mater. Res. 7, 3001 (1992).CrossRefGoogle Scholar
12.Iijima, S.: Observation of atomic steps of (111) surface of a silicon crystal using bright fields electron microscopy. Ultramicroscopy 6, 41 (1981).CrossRefGoogle Scholar
13.Chen, X. and Gibson, J.M.: Measurement of roughness at buried Si/SiO2 interfaces by transmission electron diffraction. Phys. Rev. B 54, 2846 (1996).CrossRefGoogle ScholarPubMed
14.Cherns, D.: Direct resolution of surface atomic steps by transmission electron microscopy. Philos. Mag. 30, 549 (1974).CrossRefGoogle Scholar
15.Kirkland, A.I., Jefferson, D.A., Duff, D.G., Edwards, P.P., Gameson, I., Johnson, B.F.G. and Smith, D.J.: Structural studies of trigonal lamellar particles of gold and silver. Proc. R. Soc. London, Ser. A 440, 589 (1993).Google Scholar
16.Wang, Z.L., Bentley, J., Clausing, R.E., Heatherly, L. and Horton, L.L.: Direct correlation of microtwin distribution with growth face morphology of CVD diamond films by a novel TEM technique. J. Mater. Res. 9, 1552 (1994).CrossRefGoogle Scholar
17.Hirsch, P.B., Howie, A., Nicholoson, R.B., Pashley, D.W. and Whelan, M.J.: Electron Microscopy of Thin Crystals (Butterworths, London, U.K., 1965), pp. 143144.Google Scholar
18.Duarte-Moller, A., Espinosa-Magaña, F., Martinez-Sanchez, R., Avalos-Borja, M., Hirata, G.A. and Cota-Araiza, L.: Study of different forms of carbon by analytical electron microscopy. J. Electron Spectrosc. 104, 61 (1999).CrossRefGoogle Scholar
19.Lambrecht, W.R.L., Lee, C.H., Segall, B., Angus, J.C., Li, Z. and Sunkara, M.: Diamond nucleation by hydrogenation of the edges of graphitic precursors. Nature 364, 607 (1993).CrossRefGoogle Scholar
20.Li, Z., Wang, L., Suzuki, T., Argoitia, A., Pirouz, P. and Angus, J.C.: Orientation relationship between chemical-vapor-deposition diamond and graphite substrates. J. Appl. Phys. 73, 711 (1993).CrossRefGoogle Scholar
21.Evans, T.: Changes produced by high temperature treatment of diamond, in The Properties of Diamond, edited by Field, J.E. (Academic Press, London, U.K., 1979), pp. 403424.Google Scholar
22.Jungnickel, G., Porezag, D., Frauenheim, T., Heggie, M.I., Lambrecht, W.R.L., Segall, B. and Angus, J.C.: Graphitization effects on diamond surfaces and the diamond graphite interface. Phys. Status Solidi A 154, 109 (1996).CrossRefGoogle Scholar
23.Wild, C., Kohl, R., Herres, N., Müller-Sebert, W. and Koidl, P.: Oriented CVD diamond films-twin formation, structure and morphology. Diamond Relat. Mater. 3, 373 (1994).CrossRefGoogle Scholar
24.Hamilton, D.R. and Seidensticker, R.G.: Propagation mechanism of germanium denfrites. J. Appl. Phys. 31, 1165 (1960).CrossRefGoogle Scholar
25.Jagannathan, R., Mehta, R.V., Timmons, J.A. and Black, D.L.: Anisotropic growth of twinned cubic crystals. Phys. Rev. B 48, 13261 (1993).CrossRefGoogle ScholarPubMed
26.Steeds, J.W., Mora, A.E., Butler, J.E. and Bussmann, K.M.: Transmission electron microscopy investigation of boron-doped polycrystalline chemically vapor-deposited diamond. Philos. Mag. A 82, 1741 (2002).Google Scholar
27.Bögels, G., Pot, T.M., Meekes, H., Bennema, P. and Bollen, D.: Side-face structure and growth mechanism of tabular silver bromide crystals. Acta Crystallogr. A 53, 84 (1997).CrossRefGoogle Scholar
28.Bögels, G., Meekes, H., Bennema, P. and Bollen, D.: The role of {100} side faces for lateral growth of tabular silver bromide crystals. J. Cryst. Growth 191, 446 (1998).CrossRefGoogle Scholar
29.Bögels, G., Meekes, H., Bennema, P. and Bollen, D.: Twin formation and morphology of vapour growth silver halide crystals. Philos. Mag. A 79, 639 (1998).CrossRefGoogle Scholar
30.Lee, J.W., Hwang, N.M. and Kim, D.Y.: Growth morphology of perfect and twinned faced-centered-cubic crystals by Monte Carlo simulation. J. Cryst. Growth 250, 538 (2003).CrossRefGoogle Scholar
31.Ming, N.B. and Sunagawa, I.: Twin lamellae as possible self-perpetuating step sources. J. Cryst. Growth 87, 13 (1988).CrossRefGoogle Scholar
32.Larsson, K., Lunell, S. and Carlsson, J.O.: Adsorption of hydrocarbons on a diamond (111) surface: An initio quantum-mechanical study. Phys. Rev. B 48, 2666 (1993).CrossRefGoogle ScholarPubMed
33.Tamura, H., Zhou, H., Hirano, Y., Takami, S., Kubo, M., Belosludov, R.V., Miyamoto, A., Imamura, A., Gamo, N.M. and Ando, T.: First-principle study on reactions of diamond (100) surfaces with hydrogen and methyl radicals. Phys. Rev. B 62, 16995 (2000).CrossRefGoogle Scholar
34.Grujicic, M. and Lai, S.G.: Atomistic simulation of chemical vapor deposition of (111)-oriented diamond film using a kinetic Monte Carlo method. J. Mater. Sci. 34, 7 (1999).CrossRefGoogle Scholar