Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T10:29:38.983Z Has data issue: false hasContentIssue false

Photochemical vapor deposition of silicon oxynitride films by deuterium lamp

Published online by Cambridge University Press:  31 January 2011

Junji Watanabe
Affiliation:
Department of Electrical and Electronic Engineering, Toyohashi University of Technology, Tenpaku, Toyohashi 440, Japan
Mitsugu Hanabusa
Affiliation:
Department of Electrical and Electronic Engineering, Toyohashi University of Technology, Tenpaku, Toyohashi 440, Japan
Get access

Abstract

Silicon oxynitride films have been grown by a photochemical vapor deposition process utilizing VUV light of a deuterium lamp from a gas mixture of Si2H6, NH3, and NO2 at the substrate temperature of about 330 °C. The deposition rate of the film varied with NO2 flow rate and also with the excitation light spectrum which was varied by a low-pass filter of a synthetic or fused silica plate. The composition of the films was sensitive to the NO2 flow rate which was smaller than that of NH3 by a factor of 103.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1The references in Hanabusa, M., Mater. Sci. Rep. 2, 51 (1987).CrossRefGoogle Scholar
2Kuiper, A.E.T., Koo, S.W., Habraken, F.H.P.M., and Tamminga, Y., J. Vac. Sci. Technol. B1, 62 (1983).CrossRefGoogle Scholar
3Habraken, F.H.P.M., Tijhaar, R.H.G., Weg, W. F. van der, Kuiper, A.E.T., and Willemsen, M.F.C., J. Appl. Phys. 59, 447 (1986).CrossRefGoogle Scholar
4Habraken, F. H. P. M., Kuiper, A. E. T., Tamminga, Y., and Theeten, J. B., J. Appl. Phys. 53, 6996 (1982).CrossRefGoogle Scholar
5Moslehi, M. M., Saraswat, K. C., and Shatas, S. C., Appl. Phys. Lett. 47, 1113 (1985).CrossRefGoogle Scholar
6Vasquez, R.P., Madhukar, A., Grunthaner, F. J., and Naiman, M. L., J. Appl. Phys. 59, 972 (1986).CrossRefGoogle Scholar
7Ronda, A., Glachant, A., Plossu, C., and Balland, B., Appl. Phys. Lett. 50, 171 (1987).CrossRefGoogle Scholar
8Chang, R. P. H., Chang, C. C., and Darack, S., Appl. Phys. Lett. 36, 999 (1980).CrossRefGoogle Scholar
9Denisse, C.M.M., Troost, K. Z., Elferink, J.B. Oude, Habraken, F.H.P.M., Weg, W. F. van der, and Hendriks, M., J. Appl. Phys. 60 2536 (1986).CrossRefGoogle Scholar
10Hirao, T., Setsune, K., Kitagawa, M., Kamada, T., Ohmura, T., Wasa, K., and Izumi, T., Jpn. J. Appl. Phys. 27, L21 (1988).CrossRefGoogle Scholar
11Shiozaki, H., Ohtake, H., Kiba, M., and Awane, K., Extended Abstracts of the 33rd Spring Meeting of the Japan Society of Applied Physics and of the Related Societies, Tokyo, Spring, 1986, 4p–N.Google Scholar
12Toyota, S., Matsumi, Y., Hayashi, T., Yoshikawa, H., and Komiya, M., ibid., 4p-N-8.Google Scholar
13Armstrong, J.V., Burk, A. A. Jr , Coey, J. M. D., and Moorjani, K., Appl. Phys. Lett. 50, 1231 (1987).CrossRefGoogle Scholar
14Oostrom, A. Van, Augustus, L., Habraken, F. H. P. M., and Kuiper, A. E. T., J. Vac. Sci. Technol. 20, 953 (1982).CrossRefGoogle Scholar
15Itoh, U., Toyoshima, Y., Onuki, H., Washida, N., and Ibuki, T., J. Chem. Phys. 85, 4867 (1986).CrossRefGoogle Scholar
16Okabe, H., Photochemistry of Small Molecules (Wiley, New York, 1987).sGoogle Scholar