Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T12:05:26.697Z Has data issue: false hasContentIssue false

Phase stability and consolidation of glassy/nanostructured Al85Ni9Nd4Co2 alloys

Published online by Cambridge University Press:  03 March 2011

L.C. Zhang*
Affiliation:
Fachgebiet Physikalische Metallkunde, Fachbereich 11-Material- und Geowissenschaften, Technische Universität Darmstadt, D-64287 Darmstadt, Germany; and Institut für Komplexe Materialien, IFW Dresden, D-01171 Dresden, Germany
M. Calin
Affiliation:
Fachgebiet Physikalische Metallkunde, Fachbereich 11-Material- und Geowissenschaften, Technische Universität Darmstadt, D-64287 Darmstadt, Germany; and Materials Science and Engineering Faculty, University “Politehnica” of Bucharest, R-060032 Bucharest, Romania
M. Branzei
Affiliation:
Materials Science and Engineering Faculty, University “Politehnica” of Bucharest, R-060032 Bucharest, Romania
L. Schultz
Affiliation:
Institut für Metallische Werkstoffe, IFW Dresden, D-01171 Dresden, Germany
J. Eckert
Affiliation:
Fachgebiet Physikalische Metallkunde, Fachbereich 11-Material- und Geowissenschaften, Technische Universität Darmstadt, D-64287 Darmstadt, Germany; and Institut für Komplexe Materialien, IFW Dresden, D-01171 Dresden, Germany
*
a) Address all correspondence to this author.e-mail address: lczhangimr@gmail.com and l.zhang@ifw-dresden.de
Get access

Abstract

Al85Ni9Nd4Co2 metallic glass/nanostructured ribbons and powders were used as starting materials for producing bulk amorphous/nanostructured Al-based alloys. Glassy ribbons were obtained by melt spinning at wheel surface velocities ranging from 5 to 37 m/s. The amorphous ribbons exhibited a supercooled liquid region of ∼20 K, a reduced glass transition temperature of ∼0.47 and γ ∼ 0.328. Mechanical alloying of the elemental powder mixture did not lead to amorphization. However, amorphous powders obtained by milling the glassy ribbons for 9 h exhibited a thermal stability similar to the initial ribbons. Isothermal differential scanning calorimetry measurements were used to determine the consolidation parameters of the glassy powders. Consolidation at 513 K by uniaxial hot pressing and hot extrusion indicated that the former method leads to bulk glassy samples, whereas the latter one yields nanostructured α-Al/glassy matrix composites.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Vasudevan, A.K. and Roherty, R.D.: Aluminium Alloys Contemporary Research and Application (Academic Press, San Diego, CA, 1989).Google Scholar
2Donachie, M.J. Jr.: Titanium and Titanium Alloys (American Society for Metals, Metals Park, OH, 1982).Google Scholar
3Johnson, W.L.: Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24, 42 (1999).CrossRefGoogle Scholar
4Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloy. Acta Mater. 48, 279 (2000).CrossRefGoogle Scholar
5He, Y., Poon, S.J., and Shiflet, G.J.: Synthesis and properties of metallic glasses that contain aluminum. Science 241, 1640 (1988).CrossRefGoogle ScholarPubMed
6Inoue, A., Ohtera, K., Tsai, A.P., and Masumoto, T.: New amorphous alloys with good ductility in Al–Y–M and Al–La–M (M = Fe, Co, Ni or Cu) systems. Jpn. J. Appl. Phys. 27, L280 (1988).CrossRefGoogle Scholar
7Inoue, A.: Amorphous, nanoquasicrystalline and nanocrystalline alloys in Al-based systems. Prog. Mater. Sci. 43, 365 (1998).CrossRefGoogle Scholar
8Perepezko, J.H., Hebert, R.J., and Tong, W.J.: Amorphization and nanostructure synthesis in Al alloys. Intermetallics 10, 1079 (2002).CrossRefGoogle Scholar
9He, Y., Dougherty, G., Shiflet, G.J., and Poon, S.J.: Unique metallic glass formability and ultra-high tensile strength in A1–Ni–Fe–Gd alloys. Acta Metall. Mater. 41, 337 (1993).CrossRefGoogle Scholar
10Egami, T. and Waseda, Y.: Atomic size effect on the formability of metallic glasses. J. Non-Cryst. Solids 64, 113 (1984).CrossRefGoogle Scholar
11Poon, S.J., He, Y., Shiflet, G.J., and Dougherty, G.: Science and Technology of Rapid Solidification and Processing (Kluwer Academic Publishers, New York, Boston, Dordrecht, London, Moscow, 1995), p. 43.CrossRefGoogle Scholar
12Hackenberg, R.E., Gao, M.C., Kaufman, L., and Shiflet, G.J.: Thermodynamics and phase equilibria of the Al–Fe–Gd metallic glass-forming system. Acta Mater. 50, 2245 (2002).CrossRefGoogle Scholar
13Guo, F.Q., Enouf, S.J., Poon, S.J., and Shiflet, G.J.: Formation of ductile Al-based metallic glasses without rare-earth elements. Philos. Mag. Lett. 81, 203 (2001).CrossRefGoogle Scholar
14Kim, Y.H., Choi, G.S., Kim, I.G., and Inoue, A.: High-temperature mechanical properties and structural changes in amorphous Al–Ni–Fe–Nd alloys. Mater. Trans., JIM 37, 1471 (1996).CrossRefGoogle Scholar
15Börner, I. and Eckert, J.: Phase formation and properties of mechanically alloyed amorphous Al85Y8Ni5Co2. Scripta Mater. 45, 237 (2001).CrossRefGoogle Scholar
16Chattopadhyay, P.P., Gannabattula, R.N.R., Pabi, S.K., and Manna, I.: Development of amorphous Al65Cu35−xTix alloys by mechanical alloying. Scripta Mater. 45, 1191 (2001).CrossRefGoogle Scholar
17Dougherty, G.M., Shiflet, G.J., and Poon, S.J.: Synthesis and microstructural evolution of A1–Ni–Fe–Gd metallic glass by mechanical alloying. Acta Metall. Mater. 42, 2275 (1994).CrossRefGoogle Scholar
18Benameur, T. and Inoue, A.: Amorphization of aluminum base multicomponent systems by ball milling. Mater. Trans., JIM 36, 240 (1995).CrossRefGoogle Scholar
19Eckert, J., Schultz, L., and Urban, K.: Formation of quasicrystalline and amorphous phase in mechanically alloyed Al-based and Ti–Ni-based alloys. Acta Metall. Mater. 39, 1497 (1991).CrossRefGoogle Scholar
20Schurack, F., Eckert, J., and Schultz, L.: Synthesis and properties of mechanically alloyed and ball milled high strength amorphous or quasicrystalline Al-alloys. J. Metast. Nanocryst. Mater. 2, 49 (1999).Google Scholar
21Tsai, A.P., Aoki, K., Inoue, A., and Masumoto, T.: Synthesis of stable quasicrystalline particle-dispersed Al base composite alloys. J. Mater. Res. 8, 5 (1993).CrossRefGoogle Scholar
22Zhang, L.C., Xu, J., and Ma, E.: Mechanically alloyed amorphous Ti50(Cu0.45Ni0.55)44−xAlxSi4B2 alloys with supercooled liquid region. J. Mater. Res. 17, 1743 (2002).CrossRefGoogle Scholar
23Zhang, L.C., Shen, Z.Q., and Xu, J.: Mechanically milling-induced amorphization in Sn-containing Ti-based multicomponent alloy systems. Mater. Sci. Eng., A 394, 204 (2005).CrossRefGoogle Scholar
24Zhang, L.C., Shen, Z.Q., and Xu, J.: Thermal stability of mechanically alloyed boride/ Ti50Cu18Ni22Al4Sn6 glassy alloy composites. J. Non-Cryst. Solids 351, 2277 (2005).CrossRefGoogle Scholar
25Kawamura, Y., Kato, H., Inoue, A., and Masumoto, T.: Fabrication of bulk amorphous alloys by powder consolidation. Int. J. Powder Metall. 33, 50 (1997).Google Scholar
26Inoue, A., Masumoto, N., and Masumoto, T.: Al–Ni–Y–Co amorphous alloys with high mechanical strengths, wide supercooled liquid region and large glass-forming capacity. Mater. Trans., JIM 31, 493 (1990).CrossRefGoogle Scholar
27Inoue, A., Ochiai, T., Horio, Y., and Masumoto, T.: Formation and mechanical properties of amorphous A1–Ni–Nd alloys. Mater. Sci. Eng., A 179–180, 649 (1994).CrossRefGoogle Scholar
28Schurack, F., Eckert, J., and Schultz, L.: Al–Mn–Ce quasicrystalline composites: Phase formation and mechanical properties. Philos. Mag. 83, 807 (2003).CrossRefGoogle Scholar
29Zhang, L.C., Xu, J., and Ma, E.: Consolidation and properties of ball-milled Ti50Cu18Ni22Al4Sn6 glassy alloy by equal channel angular extrusion. Mater. Sci. Eng., A 434, 280 (2006).CrossRefGoogle Scholar
30Hong, S.J., Warren, P.J., and Chun, B.S.: Nanocrystallization behaviour of Al–Y–Ni with Cu additions. Mater. Sci. Eng., A 304–306, 362 (2001).CrossRefGoogle Scholar
31Tsai, A.P., Kamiyama, T., Kawamura, Y., Inoue, A., and Masumoto, T.: Formation and precipitation mechanism of nanoscale Al particles in Al-Ni base amorphous alloys. Acta Mater. 45, 1477 (1997).CrossRefGoogle Scholar
32Perepezko, J.H., Hebert, R.J., Wu, R.I., and Wilde, G.: Atomistic simulations of the phase stability and elastic properties of nickel– zirconium alloys. J. Non-Cryst. Solids 317, 52 (2003).CrossRefGoogle Scholar
33Turnbull, D. and Cohen, M.H.: Under what conditions can a glass be formed. Contemp. Phys. 5, 473 (1969).CrossRefGoogle Scholar
34Lu, Z.P. and Liu, C.T.: A new glass-forming ability criterion for bulk metallic glasses. Acta Mater. 50, 3501 (2002).CrossRefGoogle Scholar
35Chen, L.C. and Spaepen, F.: Analysis of calorimetric measurements of grain growth. J. Appl. Phys. 69, 679 (1991).CrossRefGoogle Scholar
36Vasiliev, A.L., Aindow, M., Blackburn, M.J., and Watson, T.J.: Phase formation during the devitrification of Al-rich melt-spun Al–8.5Ni–5.0Y–3.0(Co,Fe) alloys. Scripta Mater. 52, 699 (2005).CrossRefGoogle Scholar
37Schumacher, P. and Greer, A.L.: Heterogeneously nucleated α-A1 in amorphous aluminium alloys. Mater. Sci. Eng., A 178, 309 (1994).CrossRefGoogle Scholar
38Allen, D.R., Foley, J.C., and Perepezko, J.H.: Nanocrystal development during primary crystallization of amorphous alloys. Acta Mater. 46, 431 (1998).CrossRefGoogle Scholar
39Calin, M. and Köster, U.: Nanocrystallization of Al–Ni–Y and Al–Ni–Nd Metallic Glasses. Mater. Sci. Forum 269–272, 749 (1998).CrossRefGoogle Scholar
40Eckert, J., Schultz, L., Hellstern, E., and Urban, K.: Glass-forming range in mechanically alloyed Ni–Zr and the influence of the milling intensity. J. Appl. Phys. 64, 3224 (1988).CrossRefGoogle Scholar
41Eckert, J., Schultz, L., and Urban, K.: Amorphization reaction during mechanical alloying: Influence of the milling conditions. J. Mater. Sci. 26, 441 (1991).CrossRefGoogle Scholar
42Eckert, J., Schultz, L., and Urban, K.: Formation of quasicrystal by mechanical alloying. Appl. Phys. Lett. 55, 117 (1989).CrossRefGoogle Scholar
43Eckert, J., Schultz, L., and Urban, K.: Progress of quasicrystal formation during mechanical alloying in Al-Cu-Mn and the influence of the milling intensity. Z. Metallkd. 81, 862 (1990).Google Scholar
44Azaroff, L. and Buerger, M.J.: The Powder Method in X-Ray Crystallography (McGraw-Hill, New York, 1958), p. 238.Google Scholar
45He, Y., Shiflet, G.J., and Poon, S.J.: Ball milling-induced nanocrystal formation in aluminum-base metallic glasses. Acta Mater. 43, 83 (1995).CrossRefGoogle Scholar
46Jiang, W.H. and Atzmon, M.: The effect of compression and tension on shear-band structure and nanocrystallization in amorphous Al90Fe5Gd5: A high-resolution transmission-electron-microscopy study. Acta Mater. 51, 4095 (2003).CrossRefGoogle Scholar
47Chen, H., He, Y., Shiflet, G.J., and Poon, S.J.: Deformation-induced nanocrystal formation in shear bands of amorphous alloys. Nature 367, 541 (1994).CrossRefGoogle Scholar
48Zhang, L.C., Shen, Z.Q., and Xu, J.: Glass formation in a (Ti,Zr, Hf)–(Cu,Ni,Ag)–Al high-order alloy system by mechanical alloying. J. Mater. Res. 18, 2141 (2003).CrossRefGoogle Scholar
49Gloriant, T., Gich, M., Suriñach, S., Baró, M.D., and Greer, A.L.: Evaluation of the volume fraction crystallised during devitrification of Al-based amorphous alloys. Mater. Sci. Forum 343–346, 365 (2000).CrossRefGoogle Scholar
50Ma, E., Thompson, C.V., and Clevenger, L.A.: Nucleation and growth during reaction in multiplayer Al/Ni films: The early stage of Al3Ni formation. J. Appl. Phys. 69, 2211 (1988).CrossRefGoogle Scholar
51Greer, A.L.: Metallic glasses. Science 267, 1947 (1995).CrossRefGoogle ScholarPubMed
52Kim, J.J., Choi, Y., Suresh, S., and Argon, A.S.: Nanocrystallization during nanoindentation of a bulk amorphous metal alloy at room temperature. Science 295, 654 (2002).CrossRefGoogle ScholarPubMed
53Kawamura, Y., Inoue, A., Sasamori, K., and Masumoto, T.: Consolidation mechanism of aluminum-based amorphous alloy powders during warm extrusion. Mater. Sci. Eng., A 181–182, 1174 (1994).CrossRefGoogle Scholar
54Hill, R.: The Mathematical Theory of Plasticity (Oxford University Press, London, UK, 1967).Google Scholar