Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T13:47:43.326Z Has data issue: false hasContentIssue false

Non-polar GaN film growth on (0 1 0) gallium oxide substrate by metal organic chemical vapor deposition

Published online by Cambridge University Press:  17 April 2017

Yu Cao*
Affiliation:
HRL Laboratories, LLC, Malibu, CA 90265-4797, USA
Ray Li
Affiliation:
HRL Laboratories, LLC, Malibu, CA 90265-4797, USA
Adam J. Williams
Affiliation:
HRL Laboratories, LLC, Malibu, CA 90265-4797, USA
Rongming Chu
Affiliation:
HRL Laboratories, LLC, Malibu, CA 90265-4797, USA
Andrea L. Corrion
Affiliation:
HRL Laboratories, LLC, Malibu, CA 90265-4797, USA
Ryan Chang
Affiliation:
HRL Laboratories, LLC, Malibu, CA 90265-4797, USA
*
a)Address all correspondence to this author. e-mail: yucao@hrl.com
Get access

Abstract

To achieve the first demonstration of non-polar a-plane gallium nitride (GaN) epitaxy on (0 1 0) gallium oxide substrates by metal organic chemical vapor deposition (MOCVD), a low temperature AlGaN nucleation layer was engineered. Specific low temperature AlGaN growth parameters were necessary because the gallium oxide substrate begins to decompose at ∼600 °C in the ambient of H2. To achieve a smooth GaN epitaxial surface, low V/III molar ratio, and low pressure were required. To characterize the GaN film, AFM along with an orientation-dependent crystal tilt mosaic study by X-ray diffraction was performed. We effectively reduced threading dislocation density by applying in situ SiN interlayers grown by MOCVD. The oxygen contamination in the GaN film was found to originate from the substrate decomposition during GaN growth and can be reduced more than 10 times by using GaN buffer layer grown under N2 ambient.

Type
Invited Feature Papers
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Don W. Shaw

This paper has been selected as an Invited Feature Paper.

References

REFERENCES

Higashiwaki, M., Sasaki, K., Kuramata, A., Masui, T., and Yamakoshi, S.: Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates. Appl. Phys. Lett. 100, 013504 (2012).Google Scholar
Villora, E.G., Shimamura, K., Yoshikawa, Y., Aoki, K., and Ichinose, N.: Large-size β-Ga2O3 single crystals and wafers. J. Cryst. Growth 270, 420 (2004).Google Scholar
Aida, H., Nishiguchi, K., Takeda, H., Aota, N., Sunakawa, K., and Yaguchi, Y.: Growth of β-Ga2O3 single crystals by the edge-defined, film fed growth method. Jpn. J. Appl. Phys. 47, 8506 (2008).Google Scholar
Oishi, T., Koga, Y., Harada, K., and Kasu, M.: High-mobility β-Ga2O3 (-201) single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes with Ni contact. Appl. Phys. Express 8, 1 (2015).Google Scholar
Irmscher, K., Galazka, Z., Pietsch, M., Uecker, R., and Fornari, R.: Electrical properties of β-Ga2O3 single crystals grown by the Czochralski method. J. Appl. Phys. 110, 1 (2011).Google Scholar
Sasaki, K., Kuramata, A., Masui, T., Villora, E.G., Shimamura, K., and Yamakoshi, S.: Device-quality β-Ga2O3 epitaxial films fabricated by ozone molecular beam epitaxy. Appl. Phys. Express 5, 035502 (2012).Google Scholar
Sasaki, K., Higashiwaki, M., Kuramata, A., Masui, T., and Yamakoshi, S.: Growth temperature dependences of structural and electrical properties of Ga2O3 epitaxial films grown on β-Ga2O3 (010) substrates by molecular beam epitaxy. J. Cryst. Growth 392, 30 (2014).Google Scholar
Guo, Z., Verma, A., Wu, X., Sun, F., Hickman, A., Masui, T., Kuramata, A., Higashiwaki, M., Jena, D., and Luo, T.: Anisotropic thermal conductivity in single crystal β-gallium oxide. Appl. Phys. Lett. 106, 111909 (2015).Google Scholar
Passlack, M., Schubert, E.F., Hobson, W.S., Hong, M., Moriya, N., Chu, S.N.G., Konstadinidis, K., Mannaerts, J.P., Schnoes, M.L., and Zydzik, G.J.: Ga2O3 films for electronic and optoelectronic applications. J. Appl. Phys. 77, 686 (1995).Google Scholar
Higashiwaki, M., Sasaki, K., Kamimura, T., Wong, M.H., Krishnamurthy, D., Kuramata, A., Masui, T., and Yamakoshi, S.: Depletion-mode Ga2O3 metal-oxide-semiconductor field-effect transistors on β-Ga2O3 (010) substrates and temperature dependence of their device characteristics. Appl. Phys. Lett. 103, 123511 (2013).Google Scholar
Wong, M.H., Sasaki, K., Kuramata, A., Yamakoshi, S., and Higashiwaki, M.: Field-plated Ga2O3 MOSFETs with a breakdown voltage of over 750 V. IEEE Electron Device Lett. 37, 212 (2016).Google Scholar
Wei, W., Qin, Z., Fan, S., Li, Z., Shi, K., Zhu, Q., and Zhang, G.: Valence band offset of β-Ga2O3/wurtzite GaN heterostructure measured by X-ray photoelectron spectroscopy. Nanoscale Res. Lett. 7, 562 (2012).Google Scholar
Oshi, T., Harada, K., Koga, Y., and Kasu, M.: Conduction mechanism in highly doped β-Ga2O3 (-201) single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes. Jpn. J. Appl. Phys. 55, 030305 (2016).Google Scholar
Sasaki, K., Kuramata, A., and Yamakoshi, S.: Dependence of stacking fault generation on orientation of MBE-grown β-Ga2O3 . Presented at the 57th Electronic Materials Conference (EMC), Columbus, OH, June (2015).Google Scholar
Morishima, Y., Yamashita, Y., Sato, S., Iizuka, K., Kuramata, A., and Yamakoshi, S.: MOCVD growth of GaN (0001) epitaxial layer on Ga2O3 (-201) substrate. Presented at the 5th Int. Symp. Growth of III-nitrides, N4, 50 (2014).Google Scholar
IIzuka, K., Morishima, Y., Kuramata, A., Shen, Y., Tsai, C., Su, Y., Liu, G., Hsu, T., and Yeh, J.: InGaN LEDs prepared on β-Ga2O3 (201)substrates. Proc. of SPIE 9363, 93631Z-1 (2015).Google Scholar
Yamashita, Y., Iizuka, K., Morishima, Y., Kuramata, A., and Yamakoshi, S.: Crack-free GaN (0001) epitaxial layer grown by MOCVD on β-Ga2O3 (-201) substrate. Presented at the International Workshop on Gallium Oxide and Related Materials, G3 (2015).Google Scholar
Korbutowicz, R., Wnek, J., Panachida, P., Serafinczuk, J., and Srnanek, R.: Gallium oxide buffer layers for gallium nitride epitaxy. Opt. Appl. 1, 73 (2013).Google Scholar
Shimamura, K., Villora, E.G., domen, K., Yui, K., Aoki, K., and Ichinose, N.: Epitaxial growth of GaN on (1 0 0) β-Ga2O3 substrates by metalorganic vapor phase epitaxy. Jpn. J. Appl. Phys. 44, L7 (2005).CrossRefGoogle Scholar
Nikolaev, V.I., Pechnikov, A.I., Maslov, V.N., Golovatenko, A.A., Krymov, V.M., Stepanov, S.I., Zhumashev, N.K., Bougrov, V.E., and Romanov, A.E.: GaN growth on β-Ga2O3 substrates by HVPE. Mater. Phys. Mech. 22, 59 (2015).Google Scholar
Xie, Z., Zhang, R., Xia, C., Xiu, X., Han, P., Liu, B., Zhao, H., Jiang, R., Shi, Y., and Zheng, Y.: Condensed matter: Electronic structure, electrical, magnetic, and optical properties: Demonstration of GaN/InGaN light emitting diodes on (100) β-Ga2O3 substrates by metalorganic chemical vapour deposition. Chin. Phys. Lett. 25, 2185 (2008).Google Scholar
Villora, E.G., Arjoca, S., Shimamura, K., Inomata, D., and Aoki, K.: β-Ga2O3 and single-crystal phosphors for high-brightness white LEDs and LDs, and β-Ga2O3 potential for next generation of power devices. Proc. SPIE 8987, 89871U (2014).Google Scholar
Rogan, I.S. and Muhammed, M.M.: (-201) β-gallium oxide substrate for high quality GaN materials. Proc. SPIE 9364, 93641K (2015).Google Scholar
Zhang, J., Li, B., Xia, C., Pei, G., Deng, Q., Yang, Z., Xu, W., Shi, H., Wu, F., and Wu, Y.: Growth and spectral characterization of β-Ga2O3 single crystals. J. Phys. Chem. Solids 67, 2448 (2006).Google Scholar
Galazka, Z., Uecker, R., Irmscher, K., Albrecht, M., Klimm, D., Pietsch, M., Brutzam, M., Bertram, R., Ganschow, S., and Fornari, R.: Czochralski growth and characterization of β-Ga2O3 single crystals. Cryst. Res. Technol. 45, 1229 (2010).Google Scholar
Bermudez, V.M.: The structure of low-index surfaces of β-Ga2O3 . Chem. Phys. 323, 193 (2006).Google Scholar
Nakagomi, S. and Kokubun, Y.: Cross-sectional TEM imaging of β-Ga2O3 thin films formed on c-plane and a-plane sapphire substrates. Phys. Status Solidi A 210, 1738 (2013).Google Scholar
Togashi, R., Nomura, K., Eguchi, C., Fukizawa, T., Goto, K., Thieu, Q.T., Murakami, H., Kumagai, Y., Kuramata, A., Yamakoshi, S., Monemar, B., and Koukitu, A.: Thermal stability of β-Ga2O3 in mixed flows of H2 and N2 . Jpn. J. Appl. Phys. 54, 041102 (2015).CrossRefGoogle Scholar
Ghrib, T., Boubaker, K., and Bouhafs, M.: Investigation of thermal diffusivity–microhardness correlation extended to surface-nitrured steel using Boubaker polynomials expansion. Mod. Phys. Lett. B 22, 2893 (2008).CrossRefGoogle Scholar
Tsai, T.Y., Horng, R.H., Wuu, D.S., Ou, S.L., Hung, M.T., and Hsueh, H.H.: GaN epilayer grown on Ga2O3 sacrificial layer for chemical lift-off application. Electrochem. Solid-State Lett. 14, H434 (2011).Google Scholar
Sun, Q., Kong, B.H., Yerino, C.D., Ko, T.S., Leung, B., Cho, H.K., and Han, J.: Morphological and microstructural evolution in the two-step growth of nonpolar a-plane GaN on r-plane sapphire. J. Appl. Phys. 106, 123519 (2009).Google Scholar
Detchprohm, T., Zhu, M., Li, Y., Xia, Y., Wetzel, C., Preble, E.A., Liu, L., Paskova, T., and Hanser, D.: Green light emitting diodes on a-plane GaN bulk substrates. Appl. Phys. Lett. 92, 241109 (2008).Google Scholar
Monemar, B., Lagerstedt, O., and Gislason, H.P.: Properties of Zn-doped VPE-grown GaN. I. Luminescence data in relation to doping conditions. J. Appl. Phys. 51, 625 (1980).CrossRefGoogle Scholar
Craven, M.D., Wu, F., Chakraborty, A., Imer, B., Mishra, U.K., DenBaars, S.P., and Speck, J.S.: Microstructural evolution of a-plane GaN grown on a-plane SiC by metalorganic chemical vapor deposition. Appl. Phys. Lett. 84, 1281 (2004).Google Scholar
Naoi, Y., Tada, T., Li, H., Jiang, N., and Sakai, S.: Growth and evaluation of GaN with SiN interlayer by MOCVD. Phys. Status Solidi 0, 2077 (2003).Google Scholar