Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T00:03:18.892Z Has data issue: false hasContentIssue false

Nanoindentation hardness, Young’s modulus, and creep behavior of organic–inorganic silica-based sol-gel thin films on copper

Published online by Cambridge University Press:  31 January 2011

Bruno A. Latella*
Affiliation:
Australian Nuclear Science and Technology Organisation, Menai, New South Wales 2234, Australia
Bee K. Gan
Affiliation:
Australian Nuclear Science and Technology Organisation, Menai, New South Wales 2234, Australia
Christophe J. Barbé
Affiliation:
Australian Nuclear Science and Technology Organisation, Menai, New South Wales 2234, Australia
David J. Cassidy
Affiliation:
Australian Nuclear Science and Technology Organisation, Menai, New South Wales 2234, Australia
*
a)Address all correspondence to this author. e-mail: blatella@ozemail.com.au
Get access

Abstract

In this study, the mechanical properties and creep behavior of hybrid sol-gel silica-based coatings on copper substrates were investigated. Sol-gel processing was used to synthesize the organically modified silanes using mixtures of tetraethoxysilane and vinyltrimethoxysilane or glycidoxypropyltrimethoxysilane precursors. The mechanical and creep properties of the coatings were assessed using nanoindentation. The link between film structure and creep behavior from nanoindentation experiments was examined, and simple mechanical models were used to extract Young’s modulus and viscosity from fits to creep data. It is shown that the creep response of the coatings was influenced dramatically by the chain length and amount of organic substituent.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Mackenzie, J.D.: Structures and properties of ormosils. J. Sol-Gel Sci. Technol. 2, 81 1994CrossRefGoogle Scholar
2Schmidt, H.: New type of non-crystalline solids between inorganic and organic materials. J. Non-Cryst. Solids 73, 681 1985CrossRefGoogle Scholar
3Wen, J.Wilkes, G.L.: Organic/inorganic hybrid network materials by the sol-gel approach. Chem. Mater. 8, 1667 1996CrossRefGoogle Scholar
4Wen, J., Vasudevan, V.J.Wilkes, G.L.: Abrasion resistant inorganic/organic coating materials prepared by the sol-gel method. J. Sol-Gel Sci. Technol. 5, 115 1995CrossRefGoogle Scholar
5Haas, K-H.Wolter, H.: Synthesis, properties and applications of inorganic–organic copolymers (ORMOCER®s). Curr. Opin. Solid State Mater. Sci. 4, 571 1999CrossRefGoogle Scholar
6Metroke, T.L., Parkhill, R.L.Knobbe, E.T.: Passivation of metal alloys using sol-gel-derived materials—A review. Prog. Org. Coat. 41, 233 2001CrossRefGoogle Scholar
7Sanchez, C., Lebeau, B., Ribot, F.In, M.: Molecular design of sol-gel derived hybrid organic–inorganic nanocomposites. J. Sol-Gel Sci. Technol. 19, 31 2000CrossRefGoogle Scholar
8Mackenzie, J.D.Bescher, E.: Some factors governing the coating of organic polymers by sol-gel derived hybrid materials. J. Sol-Gel Sci. Technol. 27, 7 2003CrossRefGoogle Scholar
9Latella, B.A., Ignat, M., Barbé, C.J., Cassidy, D.J.Bartlett, J.R.: Adhesion behaviour of organically-modified silicate coatings on stainless steel. J. Sol-Gel Sci. Technol. 26, 765 2003CrossRefGoogle Scholar
10Latella, B.A., Ignat, M., Barbé, C.J., Cassidy, D.J.Li, H.: Cracking and decohesion of sol-gel hybrid coatings on metallic substrates. J. Sol-Gel Sci. Technol. 31, 143 2004CrossRefGoogle Scholar
11Atanacio, A.J., Latella, B.A., Barbé, C.J.Swain, M.V.: Mechanical properties and adhesion characteristics of hybrid sol–gel thin films. Surf. Coat. Technol. 192, 354 2005CrossRefGoogle Scholar
12Ignat, M., Marieb, T., Fujimoto, H.Flinn, P.A.: Mechanical behaviour of submicron multilayers submitted to microtensile experiments. Thin Solid Films 353, 201 1999CrossRefGoogle Scholar
13Latella, B.A., Gan, B.K., Davies, K.E., McKenzie, D.R.McCulloch, D.G.: Titanium nitride/vanadium nitride alloy coatings: Mechanical properties and adhesion characteristics. Surf. Coat. Technol. 200, 3605 2006CrossRefGoogle Scholar
14Latella, B.A., Triani, G., Zhang, Z., Short, K.T., Bartlett, J.R.Ignat, M.: Enhanced adhesion of atomic layer deposited titania on polycarbonate substrates. Thin Solid Films 515, 3138 2007CrossRefGoogle Scholar
15Sakai, M.: Time-dependent viscoelastic relation between load and penetration for an axisymmetric indenter. Philos. Mag. A 82, 1841 2002CrossRefGoogle Scholar
16Yang, S., Zhang, Y-W.Zeng, K.Y.: Analysis of nanoindentation creep for polymeric materials. J. Appl. Phys. 95, 3655 2004CrossRefGoogle Scholar
17Zhang, C.Y., Zhang, Y.W.Zeng, K.Y.: Extracting the mechanical properties of a viscoelastic polymeric film on a hard elastic substrate. J. Mater. Res. 19, 3053 2004CrossRefGoogle Scholar
18Beake, B.: Modelling indentation creep of polymers: A phenomenological approach. J. Phys. D: Appl. Phys. 39, 4478 2006CrossRefGoogle Scholar
19Oyen, M.L.: Sensitivity of polymer nanoindentation creep measurements to experimental variables. Acta Mater. 55, 3633 2007CrossRefGoogle Scholar
20Horcas, I., Fernández, R., Gómez-Rodríguez, J.M., Colchero, J., Gómez-Herrero, J.Baro, A.M.: WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78, 013705 2007CrossRefGoogle Scholar
21Field, J.S.Swain, M.V.: A simple predictive model for spherical indentation. J. Mater. Res. 8, 297 1993CrossRefGoogle Scholar
22Jung, Y-G., Lawn, B.R., Martyniuk, M., Huang, H.Hu, X.Z.: Evaluation of elastic modulus and hardness of thin films by nanoindentation. J. Mater. Res. 19, 3076 2004CrossRefGoogle Scholar
23Bland, D.R.: Theory of Linear Viscoelasticity Pergamon Oxford, UK 1960Google Scholar
24Fischer-Cripps, A.C.: A simple phenomenological approach to nanoindentation creep. Mater. Sci. Eng., A 385, 74 2004CrossRefGoogle Scholar
25Lee, E.H.Radok, J.R.M.: The contact problems for viscoelastic bodies. J. Appl. Mech. 27, 438 1960CrossRefGoogle Scholar
26Kumar, M.V.R.Narasimhan, R.: Analysis of spherical indentation of linear viscoelastic materials. Curr. Sci. 87, 1088 2004Google Scholar
27Berthoud, P., Sell, C.G.Hiver, J-M.: Elastic-plastic indentation creep of glassy poly(methyl methacrylate) and polystyrene: Characterization using uniaxial compression and indentation tests. J. Phys. D: Appl. Phys. 32, 2923 1999CrossRefGoogle Scholar
28Chudoba, T.Richter, F.: Investigation of creep behaviour under load during indentation experiments and its influence on hardness and modulus results. Surf. Coat. Technol. 148, 191 2001CrossRefGoogle Scholar
29Innocenzi, P., Brusatin, G.Babonneau, F.: Competitive polymerization between organic and inorganic networks in hybrid materials. Chem. Mater. 12, 3726 2000CrossRefGoogle Scholar