Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T11:54:37.577Z Has data issue: false hasContentIssue false

Metalorganic chemical vapor deposition of carbon-free ZnO using the bis(2,2,6,6-tetramethyl-3,5-heptanedionato)zinc precursor

Published online by Cambridge University Press:  03 March 2011

L.V. Saraf*
Affiliation:
Pacific Northwest National Laboratory, Richland, Washington 99352
M.H. Engelhard
Affiliation:
Pacific Northwest National Laboratory, Richland, Washington 99352
C.M. Wang
Affiliation:
Pacific Northwest National Laboratory, Richland, Washington 99352
A.S. Lea
Affiliation:
Pacific Northwest National Laboratory, Richland, Washington 99352
D.E. McCready
Affiliation:
Pacific Northwest National Laboratory, Richland, Washington 99352
V. Shutthanandan
Affiliation:
Pacific Northwest National Laboratory, Richland, Washington 99352
D.R. Baer
Affiliation:
Pacific Northwest National Laboratory, Richland, Washington 99352
S.A. Chambers
Affiliation:
Pacific Northwest National Laboratory, Richland, Washington 99352
*
a) Address all correspondence to this author. e-mail: Lax.Saraf@pnl.gov
Get access

Abstract

Bis(2,2,6,6-tetramethyl-3,5-heptanedionato)zinc [Zn(TMHD)2] is a relatively uninvestigated precursor that was used in this work to grow highly c-axis-oriented ZnO films on Si(100). X-ray photoelectron spectroscopy studies before and after Ar ion sputtering indicated that surface carbon on several samples was reduced from as much as 34 at.% to much less than 1 at.% within the first 5 nm, indicating very clean Zn(TMHD)2 precursor decomposition. Microstructural and compositional analysis revealed columnar ZnO grains with domain widths of approximately half the total film thickness and a Zn-to-O atomic percent ratio indicative of stoichometric ZnO.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Lee, W.J., Suzuki, A., Imaeda, K., Okada, H., Wakahara, A., and Yoshida, A.: Fabrication and characterization of Eosin-Y-Sensitized ZnO solar cell. Jpn. J. Appl. Phys., Part 1 43, 152 (2004).CrossRefGoogle Scholar
2Dhananjay, , Nagaraju, J., and Krupanidhi, S.B.: Effect of Li substitution on dielectric and ferroelectric properties of ZnO thin films grown by pulsed-laser ablation. J. Appl. Phys. 99, 034105 (2006).CrossRefGoogle Scholar
3Batista, P.D. and Mulato, M.: ZnO extended-gate field-effect transistors as pH sensors. Appl. Phy. Lett. 87, 143508 (2005).CrossRefGoogle Scholar
4Emanetoglu, N.W., Zhu, J., Chen, Y., Zhong, J., Chen, Y., and Lu, Y.: Surface acoustic wave ultraviolet photodetectors using epitaxial ZnO multilayers grown on r-plane sapphire. Appl. Phys. Lett. 85, 3702 (2004).CrossRefGoogle Scholar
5Triboulet, R. and Perriere, J.: Epitaxial growth of ZnO films. Prog. Cryst. Growth Charact. Mater. 47, 65 (2003).CrossRefGoogle Scholar
6O’Brien, P., Pickett, N.L., and Otway, D.J.: Developments in CVD delivery systems: A chemist’s perspective on the chemical and physical interactions between precursors. Chem. Vap. Deposition 8, 237 (2002).3.0.CO;2-O>CrossRefGoogle Scholar
7Tuan, A.C., Bryan, J.D., Pakhomov, A.B., Shutthanandan, V., Thevuthasan, S., McCready, D.E., Gaspar, D., Engelhard, M.H., Rogers, J.W., Krishnan, K., Gamelin, D.R., and Chambers, S.A.: Epitaxial growth and properties of cobalt-doped ZnO on α–Al2O3 single-crystal substrates. Phy. Rev. B 70, 054424 (2004).CrossRefGoogle Scholar
8Lane, P.A., Wright, P.J., Crosbie, M.J., Pitt, A.D., Reeves, C.L., Cockayne, B., Jones, A.C., and Leedham, T.J.: Liquid injection metal organic chemical vapour deposition of nickel zinc ferrite thin films. J. Cryst. Growth 192, 423 (1998).CrossRefGoogle Scholar
9Saraf, L.V., Engelhard, M.H., Nachimuthu, P., Shutthanandan, V., Wang, C.M., Heald, S.M., McCready, D.E., Lea, A.S., Baer, D.R., and Chambers, S.A.: Nucleation and growth of MOCVD grown (Cr, Zn)O films—Uniform doping vs. secondary phase formation. J. Electrochem. Soc. 154, D134 (2007).CrossRefGoogle Scholar
10Babcock, J.R., Wang, A., Edleman, N.L., Benson, D.D., Metz, A.W., Metz, M.V., and Marks, T.J.: Development and implementation of new volatile Cd and Zn precursors for the growth of transparent conducting oxide thin films via MOCVD, in Materials Science of Novel Oxide-Based Electronics, edited by Ginley, D.S., Perkins, J.D., Kawazoe, H., Newns, D.M. and Kozyrev, A.B. (Mater. Res. Soc. Symp. Proc. 623, Warrendale, PA, 2000), p. 317.Google Scholar
11SIMNRA User’s Guide, edited by Mayer, M. (Max-Planck-Institut für Plasmaphysik, Garching, Germany, 1998).Google Scholar
12Auld, J., Houlton, D.J., Jones, A.C., Rushworth, S.A., Malik, M.A., O’Brien, P., and Critchlow, G.W.: Growth of ZnO by MOCVD using alkylzinc alkoxides as single-source precursors. J. Mater. Chem. 4, 1249 (1994).CrossRefGoogle Scholar
13Pan, M., Meng, G.Y., Xin, H.W., Chen, C.S., Peng, D.K., and Lin, Y.S.: Pure and doped CeO2 thin films prepared by MOCVD process. Thin Solid Films 324, 89 (1998).CrossRefGoogle Scholar
14Gao, L., Harter, P., Linsmeier, C., Gstottner, J., Emling, R., and Schmitt-Landsiedel, D.: Metalorganic chemical vapor deposition of silver thin films for future interconnects by direct liquid injection system. Mater. Sci. Semicond. Process 7, 331 (2004).CrossRefGoogle Scholar
15Wu, J., Yang, Y., Lin, Y., and Chiu, H.: Surface reaction of bis(tertbutylimido) bis(diethylamido)tungsten precursor on Si(100)–(2×1). J. Vac. Sci. Technol., A 21, 1620 (2003).CrossRefGoogle Scholar
16Li, X., Asher, S.E., Limpijumnong, S., Keyes, B.M., Perkins, C.L., Barnes, T.M., Moutinho, H.R., Luther, J.M., Zhang, S.B., Wei, S.H., and Coutts, T.J.: Impurity effects in ZnO and nitrogen-doped ZnO thin films fabricated by MOCVD. J. Cryst. Growth 287, 94 (2006).CrossRefGoogle Scholar
17Perkins, C.L., Lee, S.H., Li, X., Asher, S.E., and Coutts, T.J.: Identification of nitrogen chemical states in N-doped ZnO via x-ray photoelectron spectroscopy. J. Appl. Phys. 97, 034907 (2005).CrossRefGoogle Scholar
18Van, T.T. and Chang, J.P.: Radical-enhanced atomic layer deposition of Y2O3 via a β-diketonate precursor and O radicals. Surf. Sci. 596, 1 (2005).CrossRefGoogle Scholar
19Fujimura, N., Nishihara, T., Goto, S., Xu, J., and Ito, T.: Control of preferred orientation for ZnOx films: Control of self-texture. J. Cryst. Growth 130, 269 (1993).CrossRefGoogle Scholar
20Abouzaid, M., Tailpied, P., Ruterana, P., Liu, C., Xiao, B., Cho, S.J., Moon, Y.T., and Morkoc, H.: A TEM study of ZnO layers deposited by MBE and RF magnetron sputtering. Superlattices Microstruct. 39, 387 (2006).CrossRefGoogle Scholar
21Prasad, S.V., Walck, S.D., and Zabinski, J.S.: Microstructural evolution in lubricious ZnO films grown by pulsed laser deposition. Thin Solid Films 360, 107 (2000).CrossRefGoogle Scholar
22Liu, C., Yun, F., Xiao, B., Cho, S.J., Moon, Y.T., Morkoc, H., Abouzaid, M., Ruterana, R., Yu, K.M., and Walukiewicz, W.: Structural analysis of ferromagnetic Mn-doped ZnO thin films deposited by radio frequency magnetron sputtering. J. Appl. Phys. 97, 126107 (2005).CrossRefGoogle Scholar