Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T15:07:44.937Z Has data issue: false hasContentIssue false

High carrier concentrations of n- and p-doped GaN on Si(111) by nitrogen plasma-assisted molecular-beam epitaxy

Published online by Cambridge University Press:  31 January 2011

L.S. Chuah
Affiliation:
School of Physics, Universiti Sains Malaysia, 11800 Penang, Malaysia
Z. Hassan*
Affiliation:
School of Physics, Universiti Sains Malaysia, 11800 Penang, Malaysia
S.S. Ng
Affiliation:
School of Physics, Universiti Sains Malaysia, 11800 Penang, Malaysia
H. Abu Hassan
Affiliation:
School of Physics, Universiti Sains Malaysia, 11800 Penang, Malaysia
*
a)Address all correspondence to this author. e-mail: zai@usm.my
Get access

Abstract

High-quality doped GaN layers were grown on silicon substrates by radio frequency nitrogen plasma-assisted molecular-beam epitaxy. High-temperature-grown AlN (about 200 nm) was used as a buffer layer. In-growth doping was done using high-purity Si and Mg as n- and p-type dopants, respectively. X-ray diffraction revealed that monocrystalline GaN was obtained. This is in good agreement with the results of morphological study by atomic force microscopy. Micro-photoluminescence (PL) and micro-Raman spectroscopy were used to study the room-temperature optical properties of the doping films. No yellow-band emission was observed in the PL spectroscopy. From the Hall measurements, the resulting n-type doping concentration was measured to be (1–2) × 1019 cm−3. Fairly uniform hole concentration as high as (4–5) × 1020 cm−3 throughout the GaN crystal was achieved. In terms of the carrier concentration, it was found that the results determined from the Fourier transform infrared analysis are in good agreement with the results determined from the Hall measurements.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Jain, S.C., Willander, M., Narayan, J.Van Overstraeten, R.: III–nitrides: Growth, characterization, and properties. J. Appl. Phys. 87, 965 2000CrossRefGoogle Scholar
2Yang, J.W., Lunev, A., Simin, G., Chitnis, A., Shatalov, M., Khan, M.A., Van Nostrand, J.E.Gaska, R.: Selective area deposited blue GaN–InGaN multiple-quantum-well light-emitting diodes over silicon substrates. Appl. Phys. Lett. 76, 273 2000CrossRefGoogle Scholar
3Dadgar, A., Christen, J., Riemann, T., Richter, S., Blaesing, J., Diez, A., Krost, A., Alam, A.Heuken, M.: Bright blue electroluminescence from an InGaN/GaN multiquantum-well diode on Si(111): Impact of an AlGaN/GaN multilayer. Appl. Phys. Lett. 78, 2211 2001CrossRefGoogle Scholar
4Deelmann, P.W., Bicknell-Tassius, R.N., Nikishin, S., Kuryatkov, V.Temkin, H.: Low-noise GaN Schottky diodes on Si(111) by molecular beam epitaxy. Appl. Phys. Lett. 78, 2172 2001CrossRefGoogle Scholar
5Hiroyama, Y.Tamura, M.: Effect of very thin SiC layer on heteroepitaxial growth of cubic GaN on Si (001). Jpn. J. Appl. Phys. 37, L630 1998CrossRefGoogle Scholar
6Romano, L.T., Northrup, J.E.O’Keefe, M.A.: Inversion domains in GaN grown on sapphire. Appl. Phys. Lett. 69, 2394 1996CrossRefGoogle Scholar
7Stampfl, C., Neugebauer, J.Van Walle, C. de: Doping of AlxGa1−xN alloys. Mater. Sci. Eng., B 59, 253 1999CrossRefGoogle Scholar
8Wang, C.Davis, R.F.: Deposition of highly resistive, undoped, and p-type, magnesium-doped gallium nitride films by modified gas source molecular beam epitaxy. Appl. Phys. Lett. 63, 990 1993CrossRefGoogle Scholar
9Molnar, R.J., Singh, R.Moustakas, T.D.: Blue-violet light emitting gallium nitride p-n junctions grown by electron cyclotron resonance-assisted molecular beam epitaxy. Appl. Phys. Lett. 66, 268 1995CrossRefGoogle Scholar
10Johnson, M., Fujita, S., Rowland, W., Hughes, W., He, Y.H., El-Masry, N., Cook, J.Schetzina, J.: MBE Growth and properties of GaN and AlxGa1−xN on GaN/SiC substrates. J. Electron. Mater. 25, 793 1996CrossRefGoogle Scholar
11Dumelow, T., Parker, T.J., Smith, S.R.P.Tilley, D.R.: Far-infrared spectroscopy of phonons and plasmons in semiconductor superlattices. Surf. Sci. Rep. 37, 151 1993CrossRefGoogle Scholar
12Lyddane, R.H., Sachs, R.G.Teller, E.: On the polar vibrations of alkali halides. Phys. Rev. 59, 673 1941CrossRefGoogle Scholar
13Stevens, K.S., Ohtani, A., Kinnigurgh, M.Beresford, R.: Microstructure of AlN on Si (111) grown by plasma-assisted molecular-beam epitaxy. Appl. Phys. Lett. 65, 321 1994CrossRefGoogle Scholar
14Meng, W.J.Perry, T.A.: Strain effects in epitaxial GaN grown on AlN-buffered Si(111). J. Appl. Phys. 76, 7824 1994CrossRefGoogle Scholar
15Yasutake, K., Takeuchi, A., Kakiuchi, H.Yoshii, K.: Molecular beam epitaxial growth of AlN single crystalline films on Si (111) using radio-frequency plasma assisted nitrogen radical source. J. Vac. Sci. Technol., A 16, 2140 1998CrossRefGoogle Scholar
16Ohtani, A., Stevens, K.S.Beresford, R.: Microstructure and photoluminescence of GaN grown on Si(111) by plasma-assisted molecular-beam epitaxy. Appl. Phys. Lett. 65, 61 1994CrossRefGoogle Scholar
17Calleja, E., Sanchez-Garcia, M.A., Sanchez, F.J., Calle, F., Naranjo, F.B., Munoz, E., Molina, S.I., Sanchez, A.M., Pacheco, F.J.Garcia, R.: Growth of III-nitrides on Si(1 1 1) by molecular beam epitaxy Doping, optical, and electrical properties. J. Cryst. Growth 201/202, 296 1999CrossRefGoogle Scholar
18Ristic, J., Sanchez-Garcia, M.A., Calleja, E., Perez-Rodriguez, A., Serre, C., Romano-Rodriguez, A.Morante, J.R.: Growth of GaN layers on SiC/Si(111) substrate by molecular beam epitaxy. J. Cryst. Growth 263, 30 2004Google Scholar
19Reiher, A., Blasing, J., Dadgar, A., Diez, A.Krost, A.: Efficient stress relief in GaN heteroepitaxy on Si(1 1 1) using low-temperature AlN interlayers. J. Cryst. Growth 248, 563 2003CrossRefGoogle Scholar
20Qian, W., Skowronski, M.De Graef, M.: Microstructural characterization of α–GaN films grown on sapphire by organometallic vapor phase epitaxy. Appl. Phys. Lett. 66, 1252 1995CrossRefGoogle Scholar
21Yang, B., Trampert, A., Brandt, O., Jenichen, B.Ploog, K.H.: Structural properties of GaN layers on Si(001) grown by plasma-assisted molecular-beam epitaxy. J. Appl. Phys. 83, 3800 1998CrossRefGoogle Scholar
22Sanchez-Garcia, M.A., Calleja, E., Sanchez, F.J., Calle, F., Monroy, E., Basak, D., Munoz, E., Villar, C., Sanz-Hervas, A., Aguilar, M., Serrano, J.J.Blanco, J.M.: Growth optimization and doping with Si and Be of high quality GaN on Si(111) by molecular beam epitaxy. J. Electron. Mater. 27, 276 1998CrossRefGoogle Scholar
23Moustakas, T.D.: Epitaxial growth of GaN films produced by ECR-assisted MBE in Gallium Nitride and Related Materials edited by F.A. Ponce, R.D. Dupuis, S. Nakamura, and J.A. Edmond Mater. Res. Soc. Symp. Proc. 395, Pittsburgh, PA 1996 111Google Scholar
24Ng, S.S., Hassan, Z.Hassan, H. Abu: Optical characteristics of GaN epilayer grown on silicon substrate by Raman and PL spectroscopy. J. Solid State Sci. Technol. Lett. 12(Suppl.), 75 2005Google Scholar
25Semond, F., Damilano, B., Vezian, S., Grandjean, N., Leroux, M.Massies, J.: GaN grown on Si(111) substrate: From two-dimensional growth to quantum well assessment. Appl. Phys. 75, 82 1999Google Scholar
26Lester, S.D., Ponce, F.A., Craford, M.G.Steigerwald, D.A.: High dislocation densities in high efficiency GaN-based light-emitting diodes. Appl. Phys. Lett. 66, 1249 1999CrossRefGoogle Scholar
27Prokofyeva, T., Seon, M., Vanbuskirk, J., Holtz, M., Nikishin, S.A., Faleev, N.N., Temkin, H.Zollner, S.: Vibrational properties of AlN grown on (111)-oriented silicon. Phys. Rev. B 63, 125313 2001CrossRefGoogle Scholar
28Kozawa, T., Kachi, T., Kano, H., Taga, Y.Hashimoto, M.: Raman scattering from LO phonon-plasmon coupled modes in gallium nitride. J. Appl. Phys. 75, 1098 1994CrossRefGoogle Scholar
29Kaczmarczyk, G., Kaschner, A., Hoffman, A.Thomsen, C.: Impurity-induced modes Mg, As, Si, and C in heagonal and cubic GaN. Phys. Rev. B 61, 5353 2000CrossRefGoogle Scholar
30Kaschner, A., Siegle, H., Hoffman, A., Thomsen, C., Birkle, U., Einfeldt, S.Hommel, D.: Influence of doping on the lattice dynamics of gallium nitride. MRS Internet J. Nitride Semicond. Res. 4S1, G3.57 1999Google Scholar
31Melnik, Y.V., Vassilevski, K.V., Nikitina, I.P., Babanin, A.I., Davydov, V.Y.Dmitriev, V.A.: Physical properties of bulk GaN crystals grown by HVPE. MRS Internet J. Nitride Semicond. Res. 2, 39 1997CrossRefGoogle Scholar
32Svensk, O., Suihkonen, S., Lang, T., Lipsanen, H., Sopanen, M., Odnoblyudov, M.A.Bougrov, V.E.: Effect of growth conditions on electrical properties of Mg-doped p-GaN. J. Cryst. Growth 298, 811 2007CrossRefGoogle Scholar
33Myoung, J.M., Kim, C., Shim, K.H., Gluschenkov, O., Kim, K.Yoo, M.C.: High-quality p-type GaN films grown by plasma-assisted molecular-beam epitaxy in III-Nitride, SiC and Diamond Materials for Electronic Devices edited by D.K. Gaskill, C.D. Brandt, and R.J. Nemanich Mater. Res. Soc. Symp. Proc. 423, Pittsburgh, PA 1996 385Google Scholar
34Anderson, P.W.: Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492 1958CrossRefGoogle Scholar
35Mott, N.F., Davis, E.A.: Electronic Process in Non-Crystalline Materials University Press London, UK 1979Google Scholar
36Shklovskii, B.I., Efi-os, A.L.: Electronic Properties of Doped Semiconductors Springer Berlin, Germany 1984CrossRefGoogle Scholar
37Berreman, D.W.: Infrared absorption at longitudinal optic frequency in cubic crystal films. Phys. Rev. 130, 2193 1963CrossRefGoogle Scholar
38Kozawa, T., Kachi, T., Kano, H., Taga, Y.Hashimoto, M.: Raman scattering from LO phonon-plasmon coupled modes in gallium nitride. J. Appl. Phys. 75, 1098 1994CrossRefGoogle Scholar
39Mirjalili, G., Dumelow, T., Parker, T.J., Shayesteh, S.F., Cheng, T.S., Foxon, C.T., Jenkins, L.C.Lacklinson, D.E.: Far infrared spectroscopy of thin epitaxial layers of GaN deposited by molecular beam epitaxy on GaP substrates. Infrared Phys. Technol. 37, 389 1996CrossRefGoogle Scholar
40Davydov, V.Y., Kitaev, Y.E., Goncharuk, I.N., Smirnov, A.N., Graul, J., Semchinova, O., Uffmann, D., Smirnov, M.B., Mirgorodsky, A.P.Evarestov, R.A.: Phonon dispersion and Raman scattering in hexagonal GaN and AlN. Phys. Rev. B 58, 12899 1998CrossRefGoogle Scholar
41Yu, G., Ishikawa, H., Egawa, T., Soga, T., Watanabe, J., Jimbo, T.Umeno, M.: Polarized reflectance spectroscopy and spectroscopic ellipsometry determination of the optical anisotropy of gallium nitride on sapphire. Jpn. J. Appl. Phys. 36, L1029 2007Google Scholar
42Persson, C., Ahyja, R., Silva, A. Ferreira daJohansson, B.: Effective electronic masses in wurtzite and zinc-blende GaN and AlN. J. Cryst. Growth 231, 407 2001CrossRefGoogle Scholar
43Bougrov, V., Levinshtein, M., Rumyantsev, S.Zubrilov, A.Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe, edited by M.E. Levinshtein, S.L. Rumyantsev, and M.S. Shur John Wiley & Sons New York 2001Google Scholar
44Goldberg, Yu.: Aluminum nitride in Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe, edited by M.E. Levinshtein, S.L. Rumyantsev, and M.S. Shur John Wiley & Sons New York 2001Google Scholar