Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T10:36:50.207Z Has data issue: false hasContentIssue false

c-Axis conductivity and conductivity anisotropy in graphite intercalation compounds

Published online by Cambridge University Press:  31 January 2011

E. McRae
Affiliation:
Laboratoire de Chimie du Solide Minéral, UA CNRS 158, Service de Chimie Minérale Appliquée, BP 239, 54506 Vandoeuvre-les-Nancy Cédex, France
J. F. Marêché
Affiliation:
Laboratoire de Chimie du Solide Minéral, UA CNRS 158, Service de Chimie Minérale Appliquée, BP 239, 54506 Vandoeuvre-les-Nancy Cédex, France
Get access

Abstract

The stage (s) and temperature (4.2≤T≤295 K) dependence of the c-axis resistivity ρc and the conductivity anisotropy (ρca), taking into account all available literature data as well as those from the laboratory, are examined. For all intercalants, the ρc (s, T) variations are highly similar. The temperature coefficient of resistivity is generally positive over the entire T range for the richest compounds; it slowly decreases in magnitude and changes sign as s increases. The sign change occurs for a compound between the second and fifth stage depending on the intercalant. At 4.2 Kρc is T independent. Except for a few stage 1 compounds, the anisotropy always rises upon decreasing T. An analysis of the existing c-axis conductivity models is given: these invoke phonon- and impurity-assisted hopping mechanisms, interlayer conducting paths, and stacking faults. Some unanswered questions are raised that may indicate directions of future research.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Intercalated Materials, edited by Levy, F. (Reidel, Dordrecht, Holland, 1979).CrossRefGoogle Scholar
2Dresselhaus, M. S. and Dresselhaus, G.Adv. Phys. 30, 139 (1981).CrossRefGoogle Scholar
3Solin, S. A.Adv. Chem. Phys. 49, 455 (1982).Google Scholar
4Proceedings of the International Symposium on Graphite Intercalation Compounds, Tsukuba, Japan, 2730 May 1985, edited by Nakao, K. and Solin, S. A.; published in Synth. Met. 12, (1985).Google Scholar
5Colloque Franco-Japonais sur les Composes d'Insertion du Graphite, Paris, France, 811 October 1985, edited by Bok, J.Rigaux, C.Rosenman, I. and Kamimura, H.; published in Ann. Phys. Fr. 11, col-loq. 2 (1986).Google Scholar
6Extended Abstracts Carbon '86, Baden-Baden, Federal Republic of Germany, 30 June-4 July 1986.Google Scholar
7Mater. Res. Soc. Symp. Proc. EA-8 (1986).Google Scholar
8McRae, E. and Maréchê, J. F.J. Phys. C18, 1627 (1985).Google Scholar
9Issi, J. P. and Piraux, L. in Ref. 5, p. 165.Google Scholar
10McRae, E. and Maréchê, J. F. in Ref. 6, p. 523.Google Scholar
11McRae, E.Maréchê, J. F. and Herold, A. in Ref. 7, p. 152.Google Scholar
12Bendriss-Rerhrhaye, A., Thesis, University of Nancy, 1986.Google Scholar
13McRae, E.Maréchê, J. F. and Herold, A.J. Phys. E13, 241 (1980).Google Scholar
14McRae, E.Maréchê, J. F.Lelaurain, M.Furdin, G. and Herold, A.J. Phys. Chem. Solids 48, 957 (1987).CrossRefGoogle Scholar
15Marchand, D.Fretigny, C.Lagues, M.Legrand, A. P.McRae, E.Mareche, J. F. and Lelaurain, M.Carbon 22, 497 (1984).Google Scholar
16Klein, C. A.J. Appl. Phys. 33, 3338 (1962); Rev. Mod. Phys. 34, 56 (1962).Google Scholar
17Spain, I. L.Ubbelohde, A. R. and Young, D. A.Philos. Trans. R. Soc. A262, 345 (1967).Google Scholar
18Kawamura, K.Ouchi, Y.Oshima, H. and Tsuzuku, T.J. Phys. Soc. Jpn. 46, 587 (1979).CrossRefGoogle Scholar
19Morgan, G. J. and Uher, C.Philos. Mag. B44, 427 (1981).Google Scholar
20Maréchê, J. F.McRae, E.Nadi, N. and Vangelisti, R.Synth. Met. 8, 163 (1983).CrossRefGoogle Scholar
21Fuerst, C. D.Johnson, W. D. and Fischer, J. E. Extended Abstracts of the 14th Biennial Conference on Carbon, Pennsylvania State University, 25-29 June 1979, p. 296.Google Scholar
22Basu, S.Zeller, C.Flanders, P.Fuerst, C. J.Johnson, W. D. and Fischer, J. E.Mater. Sci. Eng. 38, 275 (1979).CrossRefGoogle Scholar
23Ubbelohde, A. R.Proc. R. Soc. London Ser. A327, 289 (1972); Carbon 14, 1 (1976).Google Scholar
24Murray, J. J. and Ubbelohde, A. R.Proc. R. Soc. London Ser. A312, 371 (1969).Google Scholar
25Girifalco, L. A. and Montelbano, T. D.J. Mater. Sci. 11, 1036 (1976).CrossRefGoogle Scholar
26Perrachon, J. B.Zeller, C. and Vogel, F. L. in Ref. 21, p. 304.Google Scholar
27Drummond, I. and Ubbelohde, A. R.Proc. R. Soc. London Ser. A371, 309 (1980).Google Scholar
28Foley, G. M. T.Zeller, C.Falardeau, E. R. and Vogel, F. L.Solid State Commun. 24, 371 (1977).CrossRefGoogle Scholar
29Blackman, L. C. F.Mathews, J. F. and Ubbelohde, A. R.Proc. R. Soc. London Ser. A256, 15 (1960); 258, 329 (1960); 258, 339 (1960).Google Scholar
30Boissonneau, J. F. and Colin, G.Carbon 11, 567 (1973).CrossRefGoogle Scholar
31Phan, K.Fuerst, C. D. and Fischer, J. E.Solid State Commun. 44, 1351 (1982).CrossRefGoogle Scholar
32Issi, J. P.Poulaert, B.Heremans, J. and Dresselhaus, M. S.Solid State Commun. 44, 449 (1982).CrossRefGoogle Scholar
33Enoki, T.Imaeda, K.Inokuchi, H.Miyajima, S.Chiba, T. and Sano, M. in Ref. 7, p. 63.Google Scholar
34Ibrahim, A. K. and Zimmerman, G. O.Phys. Rev. B34, 4224 (1986).Google Scholar
35Morelli, D. T. and Uher, C.Phys. Rev. B27, 2477 (1983).Google Scholar
36Piraux, L.Issi, J. P. and Eklund, P. C.Solid State Commun. 56, 413 (1985).Google Scholar
37Ohta, Y.Kawamura, K. and Tsuzuku, T. Textes Courts, Conference Internationale sur les Carbones, Bordeaux, France, 2-6 July 1984, p. 298.Google Scholar
38Ohta, Y.Kawamura, K. and Tsuzuku, T.J. Phys. Soc. Jpn. 55, 2338 (1986).CrossRefGoogle Scholar
39Vaknin, D.Davidov, D.Selig, H. and Moses, D. in Ref. 6, p. 514.Google Scholar
40Gverdtsiteli, I. G.Karandarishvili, A. G.Zaitsev, V. P. and Shartava, Sh. Sh.Russ. J. Phys. Chem. 55, 85 (1981); Inorg. Mater. 20, 1302 (1983).Google Scholar
41Maréchê, J. F.McRae, E. and Elguendouz, H. Solid State Commun. (to be published).Google Scholar
42Maréchê, J. F.McRae, E.Bendriss-Rerhrhaye, A., and Lagrange, P.J. Phys. Chem. Solids 47, 477 (1986).CrossRefGoogle Scholar
43McRae, E.Maréchê, J. F.Bendriss-Rerhrhaye, A., Lagrange, P. and Lelaurain, M. in Ref. 5, p. 13.Google Scholar
44Nadi, N. E.McRae, E.Maréchê, J. F.Lelaurain, M. and Herold, A.Carbon 24, 695 (1986).CrossRefGoogle Scholar
44McRae, E.Lelaurain, M.Maréchê, J. F.Furdin, G.Herold, A. and Jean, M. Saint, J. Mater. Res. 3, 97 (1988).Google Scholar
46Lelaurain, M.Maréchê, J. F.McRae, E.Furdin, G. and Herold, A.J. Mater. Res. 3, 87 (1988).CrossRefGoogle Scholar
47Touhara, H. data presented at ISGIC-4, Jerusalem, Israel, 2428 May 1987.Google Scholar
48Stein, R. M.Walmsley, L. and Rettori, C.Phys. Rev. B32, 4134 (1985).Google Scholar
49Lelaurain, M.Maréchê, J. F.McRae, E.Perignon, A.Pernot, P. and R. Vangelisti (to be published).Google Scholar
50McRae, E.Billaud, D.Maréchê, J. F. and Herold, A.Physica B99, 480 (1980).Google Scholar
51Mooij, J. H.Phys. Status Solidi A17, 521 (1973).Google Scholar
52Young, D. A.Carbon 6, 135 (1968).Google Scholar
53Ono, S.J. Phys. Soc. Jpn. 40, 498 (1976).Google Scholar
54Tsuzuku, T.Carbon 17, 293 (1979).CrossRefGoogle Scholar
55Uher, C.Hockey, R. L. and Ben-Jacob, E., Phys. Rev. B35, 4483 (1987).Google Scholar
56Markiewicz, R. S.Solid State Commun. 57, 237 (1986).CrossRefGoogle Scholar
57Shimamura, S.Synth. Met. 12, 365 (1985).CrossRefGoogle Scholar
58Sugihara, K.Phys. Rev. B29, 5872 (1984).Google Scholar
59Sugihara, K. preprint; Synth. Met. (to be published).Google Scholar