Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T22:19:26.321Z Has data issue: false hasContentIssue false

An experimental and theoretical study of the optical, electronic, and magnetic properties of novel inverted α-Cr2O3@α-Mn0.35Cr1.65O2.94 core shell nanoparticles

Published online by Cambridge University Press:  05 January 2017

Mohammad D. Hossain
Affiliation:
Department of Physics, Astronomy & Materials Science, Missouri State University, Springfield, MO 65897
Robert A. Mayanovic*
Affiliation:
Department of Physics, Astronomy & Materials Science, Missouri State University, Springfield, MO 65897
Ridwan Sakidja
Affiliation:
Department of Physics, Astronomy & Materials Science, Missouri State University, Springfield, MO 65897
Mourad Benamara
Affiliation:
University of Arkansas Nano-Bio Materials Characterization Facility, University of Arkansas, Fayeteville, AR 72701
*
a) Address all correspondence to this author. e-mail: robertmayanovic@missouristate.edu
Get access

Abstract

Magnetic core–shell nanoparticles (CSNs) have potential applications in spintronic devices, drug delivery systems, and magnetic random access memory. By use of our hydrothermal nano-phase epitaxy method, we have accomplished synthesis of novel, well-ordered α-Cr2O3@α-Mn0.35Cr1.65O2.94 inverted CSNs. XRD and TEM analyses show a core–shell structure with corundum phase throughout the core and shell with a minimal amount of interface defects. TEM-EDX and XPS data show Mn having the +2 oxidation state in the shell of the CSNs. Magnetization measurements at 5 K show a weak coercivity (H C) value of 8 Oe and an exchange bias field (H E) of 293 Oe. Ab initio calculations show that Mn incorporation in α-Cr2O3 results in narrowing of the energy band gap, substantiated by UV–Vis measurements, and half metallic behavior in case of Mn(III) substitution. Our calculations substantiate that Mn substitution in α-Cr2O3 results in a combination of antiferromagnetic and weak ferrimagnetic character of our CSNs.

Type
Invited Papers
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Song, S., Wang, X., and Zhang, H.: CeO2-encapsulated noble metal nanocatalysts: Enhanced activity and stability for catalytic application. NPG Asia Mater. 7(5), e179 (2015).CrossRefGoogle Scholar
Gawande, M.B., Goswami, A., Asefa, T., Guo, H., Biradar, A.V., Peng, D-L., Zboril, R., and Varma, R.S.: Core–shell nanoparticles: Synthesis and applications in catalysis and electrocatalysis. Chem. Soc. Rev. 44(21), 7540 (2015).CrossRefGoogle Scholar
Byers, C.P., Zhang, H., Swearer, D.F., Yorulmaz, M., Hoener, B.S., Huang, D., Hoggard, A., Chang, W-S., Mulvaney, P., Ringe, E., Halas, N.J., Nordlander, P., Link, S., and Landes, C.F.: From tunable core–shell nanoparticles to plasmonic drawbridges: Active control of nanoparticle optical properties. Sci. Adv. 1(11), e1500988 (2015).CrossRefGoogle ScholarPubMed
Borys, N.J., Walter, M.J., Huang, J., Talapin, D.V., and Lupton, J.M.: The role of particle morphology in interfacial energy transfer in CdSe/CdS heterostructure nanocrystals. Science 330(6009), 1371 (2010).CrossRefGoogle ScholarPubMed
Liu, L., Qi, Y., Hu, J., Liang, Y., and Cui, W.: Efficient visible-light photocatalytic hydrogen evolution and enhanced photostability of core@shell Cu2O@g-C3N4 octahedra. Appl. Surf. Sci. 351, 1146 (2015).CrossRefGoogle Scholar
Dong, W., Pan, F., Xu, L., Zheng, M., Sow, C.H., Wu, K., Xu, G.Q., and Chen, W.: Facile synthesis of CdS@TiO2 core–shell nanorods with controllable shell thickness and enhanced photocatalytic activity under visible light irradiation. Appl. Surf. Sci. 349, 279 (2015).CrossRefGoogle Scholar
Skumryev, V., Stoyanov, S., Zhang, Y., Hadjipanayis, G., Givord, D., and Nogués, J.: Beating the superparamagnetic limit with exchange bias. Nature 423(6942), 850 (2003).CrossRefGoogle ScholarPubMed
Evans, R.F.L., Yanes, R., Mryasov, O., Chantrell, R.W., and Chubykalo-Fesenko, O.: On beating the superparamagnetic limit with exchange bias. EPL Europhys. Lett. 88(5), 57004 (2009).CrossRefGoogle Scholar
Nogués, J., Sort, J., Langlais, V., Skumryev, V., Suriñach, S., Muñoz, J.S., and Baró, M.D.: Exchange bias in nanostructures. Phys. Rep. 422, 65 (2005).CrossRefGoogle Scholar
Berkowitz, A.E., Rodriguez, G.F., Hong, J.I., An, K., Hyeon, T., Agarwal, N., Smith, D.J., and Fullerton, E.E.: Antiferromagnetic MnO nanoparticles with ferrimagnetic Mn3O4 shells: Doubly inverted core–shell system. Phys. Rev. B: Condens. Matter Mater. Phys. 77(2), 024403 (2008).CrossRefGoogle Scholar
Li, W., Zhao, R., Wang, L., Tang, R., Zhu, Y., Lee, J.H., Cao, H., Cai, T., Guo, H., Wang, C., Ling, L., Pi, L., Jin, K., Zhang, Y., Wang, H., Wang, Y., Ju, S., and Yang, H.: Oxygen-vacancy-induced antiferromagnetism to ferromagnetism transformation in Eu0.5Ba0.5TiO3−δ multiferroic thin films. Sci. Rep. 3, 2618 (2013).CrossRefGoogle ScholarPubMed
Juhin, A., López-Ortega, A., Sikora, M., Carvallo, C., Estrader, M., Estradé, S., Peiró, F., Baró, M.D., Sainctavit, P., Glatzel, P., and Nogués, J.: Direct evidence for an interdiffused intermediate layer in bi-magnetic core–shell nanoparticles. Nanoscale 6(20), 11911 (2014).CrossRefGoogle ScholarPubMed
Evans, R.F.L., Bate, D., Chantrell, R.W., Yanes, R., and Chubykalo-Fesenko, O.: Influence of interfacial roughness on exchange bias in core–shell nanoparticles. Phys. Rev. B: Condens. Matter Mater. Phys. 84(9), 092404 (2011).CrossRefGoogle Scholar
Dey, S., Hossain, M.D., Mayanovic, R.A., Wirth, R., and Gordon, R.A.: Novel highly-ordered core-shell nanoparticles. J. Mater. Sci 52(4), 2066 (2016).CrossRefGoogle Scholar
Jamtveit, B.: Geosystems in Growth Dissolution Pattern Form, Jamtveit, B. and Meakin, P., eds. (Springer, Netherlands, 1999); pp. 6584.CrossRefGoogle Scholar
Farzaneh, F.: Synthesis and characterization of Cr2O3 nanoparticles with triethanolamine in water under microwave irradiation. J. Sci., Islamic Repub. Iran 22(4), 329 (2011).Google Scholar
Hossain, M.D., Dey, S., Mayanovic, R.A., and Benamara, M.: Structural and magnetic properties of well-ordered inverted core-shell α-Cr2O3/α-M x Cr2−x O3 (M = Co, Ni, Mn, Fe) nanoparticles. MRS Adv. 1, 2387 (2016).CrossRefGoogle Scholar
TOPAS V4: General Profile and Structure Analysis Software for Powder Diffraction Data—User’s Manual (Bruker AXS, Karlsruhe, 2008).Google Scholar
Dinnebier, R. and Müller, M.: In Mod. Diffr. Methods, Mittemeijer, E.J. and Welzel, U., eds. (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2012); pp. 2760.CrossRefGoogle Scholar
Liechtenstein, A.I., Anisimov, V.I., and Zaanen, J.: Density-functional theory and strong interactions: Orbital ordering in Mott–Hubbard insulators. Phys. Rev. B: Condens. Matter Mater. Phys. 52(8), R5467 (1995).CrossRefGoogle ScholarPubMed
Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Corso, A.D., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A.P., Smogunov, A., Umari, P., and Wentzcovitch, R.M.: Quantum ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 21(39), 395502 (2009).Google ScholarPubMed
Monkhorst, H.J. and Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B: Condens. Matter Mater. Phys. 13(12), 5188 (1976).CrossRefGoogle Scholar
Shi, S., Wysocki, A.L., and Belashchenko, K.D.: Magnetism of chromia from first-principles calculations. Phys. Rev. B: Condens. Matter Mater. Phys. 79(10), 104404 (2009).CrossRefGoogle Scholar
Perdew, J.P. and Zunger, A.: Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B: Condens. Matter Mater. Phys. 23(10), 5048 (1981).CrossRefGoogle Scholar
Yang, J.: Structural analysis of perovskite LaCr1−x Ni x O3 by Rietveld refinement of X-ray powder diffraction data. Acta Crystallogr., Sect. B 64(Pt 3), 281 (2008).CrossRefGoogle Scholar
Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., Sect. A 32(5), 751 (1976).CrossRefGoogle Scholar
Swaminathan, R., Willard, M.A., and McHenry, M.E.: Experimental observations and nucleation and growth theory of polyhedral magnetic ferrite nanoparticles synthesized using an RF plasma torch. Acta Mater. 54(3), 807 (2006).CrossRefGoogle Scholar
Swaminathan, R., McHenry, M.E., Poddar, P., and Srikanth, H.: Magnetic properties of polydisperse and monodisperse NiZn ferrite nanoparticles interpreted in a surface structure model. J. Appl. Phys. 97(10), 10G104 (2005).CrossRefGoogle Scholar
Punugupati, S., Narayan, J., and Hunte, F.: Strain induced ferromagnetism in epitaxial Cr2O3 thin films integrated on Si(001). Appl. Phys. Lett. 105(13), 132401 (2014).CrossRefGoogle Scholar
Yang, G., Gao, D., Zhang, J., Zhang, J., Shi, Z., and Xue, D.: Evidence of vacancy-induced room temperature ferromagnetism in amorphous and crystalline Al2O3 nanoparticles. J. Phys. Chem. C 115(34), 16814 (2011).CrossRefGoogle Scholar
An, Y., Ren, Y., Yang, D., Wu, Z., and Liu, J.: Oxygen vacancy-induced room temperature ferromagnetism and magnetoresistance in Fe-doped In2O3 films. J. Phys. Chem. C 119(8), 4414 (2015).CrossRefGoogle Scholar
Niu, G., Hildebrandt, E., Schubert, M.A., Boscherini, F., Zoellner, M.H., Alff, L., Walczyk, D., Zaumseil, P., Costina, I., Wilkens, H., and Schroeder, T.: Oxygen vacancy induced room temperature ferromagnetism in Pr-doped CeO2 thin films on silicon. ACS Appl. Mater. Interfaces 6(20), 17496 (2014).CrossRefGoogle ScholarPubMed
Cao, H., Qiu, X., Liang, Y., Zhao, M., and Zhu, Q.: Sol–gel synthesis and photoluminescence of p-type semiconductor Cr2O3 nanowires. Appl. Phys. Lett. 88(24), 241112 (2006).CrossRefGoogle Scholar
Julkarnain, M., Hossain, J., Sharif, K.S., and Khan, K.A.: Optical properties of thermally evaporated Cr2O3 thin films. Research Gate 3(4), 81 (2012).Google Scholar
Abdullah, M.M., Rajab, F.M., and Al-Abbas, S.M.: Structural and optical characterization of Cr2O3 nanostructures: Evaluation of its dielectric properties. AIP Adv. 4(2), 027121 (2014).CrossRefGoogle Scholar
Corliss, L.M., Hastings, J.M., Nathans, R., and Shirane, G.: Magnetic structure of Cr2O3 . J. Appl. Phys. 36(3), 1099 (1965).CrossRefGoogle Scholar
Julien, C.M., Ait-Salah, A., Mauger, A., and Gendron, F.: Magnetic properties of lithium intercalation compounds. Ionics 12(1), 21 (2006).CrossRefGoogle Scholar
Goldenberg, N.: Magnetism and valency: Manganese compounds. Trans. Faraday Soc. 36(0), 847 (1940).CrossRefGoogle Scholar
Contreras-García, J., Pendás, Á.M., Silvi, B., and Manuel Recio, J.: Useful applications of the electron localization function in high-pressure crystal chemistry. J. Phys. Chem. Solids 69(9), 2204 (2008).CrossRefGoogle Scholar
Silvi, B. and Savin, A.: Classification of chemical bonds based on topological analysis of electron localization functions. Nature 371(6499), 683 (1994).CrossRefGoogle Scholar
Becke, A.D. and Edgecombe, K.E.: A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 92(9), 5397 (1990).CrossRefGoogle Scholar
Hossain, M.D., Sakidja, R., and Mayanovic, R.A.: Electronic and magnetic properties of Ni-Substituted α-Cr2O3 from first principles calculations (2016). Under submission.Google Scholar
Shinde, V.R., Gujar, T.P., Lokhande, C.D., Mane, R.S., and Han, S-H.: Mn doped and undoped ZnO films: A comparative structural, optical and electrical properties study. Mater. Chem. Phys. 96(2–3), 326 (2006).CrossRefGoogle Scholar
Yang, S. and Zhang, Y.: Structural, optical and magnetic properties of Mn-doped ZnO thin films prepared by sol–gel method. J. Magn. Magn. Mater. 334, 52 (2013).CrossRefGoogle Scholar
Kim, K.J. and Park, Y.R.: Spectroscopic ellipsometry study of optical transitions in Zn1−x Co x O alloys. Appl. Phys. Lett. 81(8), 1420 (2002).CrossRefGoogle Scholar
Lee, Y.R., Ramdas, A.K., and Aggarwal, R.L.: Energy gap, excitonic, and “internal” Mn2+ optical transition in Mn-based II–VI diluted magnetic semiconductors. Phys. Rev. B: Condens. Matter Mater. Phys. 38(15), 10600 (1988).CrossRefGoogle ScholarPubMed
Diouri, J., Lascaray, J.P., and Amrani, M.E.: Effect of the magnetic order on the optical-absorption edge in Cd1−x Mn x Te. Phys. Rev. B: Condens. Matter Mater. Phys. 31(12), 7995 (1985).CrossRefGoogle Scholar
Wang, Q., Sun, Q., Rao, B.K., and Jena, P.: Magnetism and energetics of Mn-doped ZnO ( $10\bar 10$ ) thin films. Phys. Rev. B: Condens. Matter Mater. Phys. 69(23), 233310 (2004).CrossRefGoogle Scholar
Bououdina, M., Omri, K., El-Hilo, M., El Amiri, A., Lemine, O.M., Alyamani, A., Hlil, E.K., Lassri, H., and El Mir, L.: Structural and magnetic properties of Mn-doped ZnO nanocrystals. Phys. E 56, 107 (2014).CrossRefGoogle Scholar
Karmakar, R., Neogi, S.K., Banerjee, A., and Bandyopadhyay, S.: Structural; morphological; optical and magnetic properties of Mn doped ferromagnetic ZnO thin film. Appl. Surf. Sci. 263, 671 (2012).CrossRefGoogle Scholar
Choudhury, B. and Choudhury, A.: Oxygen vacancy and dopant concentration dependent magnetic properties of Mn doped TiO2 nanoparticle. Curr. Appl. Phys. 13(6), 1025 (2013).CrossRefGoogle Scholar
Supplementary material: File

Hossain supplementary material

Hossain supplementary material 1

Download Hossain supplementary material(File)
File 4.3 MB