Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T02:01:00.909Z Has data issue: false hasContentIssue false

Unusual magnetic properties of Mn-doped ThO2 nanoparticles

Published online by Cambridge University Press:  31 January 2011

M.K. Bhide
Affiliation:
Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
R.M. Kadam
Affiliation:
Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
A.K. Tyagi
Affiliation:
Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
K.P. Muthe
Affiliation:
Technical Physics and Prototype Engineering Division, Bhabha Atomic Research Centre, Mumbai 400085, India
H.G. Salunke
Affiliation:
Technical Physics and Prototype Engineering Division, Bhabha Atomic Research Centre, Mumbai 400085, India
S.K. Gupta
Affiliation:
Technical Physics and Prototype Engineering Division, Bhabha Atomic Research Centre, Mumbai 400085, India
A. Vinu
Affiliation:
Nano-ionics Materials Group, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
A. Asthana
Affiliation:
Advanced Electron Microscopy Group, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
S.V. Godbole*
Affiliation:
Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
*
a) Address all correspondence to this author. e-mail: svgod@barc.gov.in
Get access

Abstract

We report the synthesis of Th1–xMnxO2 (x = 0, 0.001, 0.002, 0.004, and 0.01 wt%) nanoparticles by the urea combustion method using thorium nitrate gel followed by heat treatment at a higher temperature (T). The obtained Th1–xMnxO2 nanocrystals were characterized by x-ray diffraction (XRD), direct-current magnetization (M) measurements and electron paramagnetic resonance (EPR). XRD analysis revealed that Th1–xMnxO2 crystallizes in the cubic structure (Fm3m). M measurements showed ferromagnetic ordering at room temperature for Th0.99Mn0.01O2 samples annealed at 775 K. An intense and broad ferromagnetic resonance (FMR) having linewidth of ∼1200 G, was observed at relatively lower fields in the EPR spectra of Th0.99Mn0.01O2 samples annealed at 775 K, indicating the presence of a ferromagnetic phase at room temperature. EPR measurements were used to estimate the number of spins involved in the ferromagnetic ordering. Out of the total Mn present in Th0.99Mn0.01O2 samples, about 25% of the Mn2+ ions were found to be responsible for the ferromagnetic ordering. In addition to the FMR signal, a weak hyperfine sextet was observed at g = 2.0048 (55Mn, I = 5/2), which corresponds to the −1/2 ↔ +1/2 transition of Mn2+ ions, suggesting its presence at thorium sites (uncoupled spins). X-ray photoelectron spectra indicated that the manganese ions exist mainly as Mn2+, Mn3+, and Mn4+. The room-temperature ferromagnetism may be attributed to the coupling between these Mn2+ ions at thorium sites in ThO2 rather than due to the formation of any metastable secondary phases.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Wolf, S.A., Awschalom, D.D., Buhrman, R.A., Daughton, J.M., Von Molnar, S., Roukes, M.L., Chthelkanova, A.Y.Treger, D.M.: Spintronics: A spin based electronics vision for the future. Science 294, 1488 2001CrossRefGoogle ScholarPubMed
2Ohno, Y., Young, D.K., Beshoten, B., Matsukura, F., Ohno, H.Awschalom, D.I.: Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature 402, 790 1999CrossRefGoogle Scholar
3Ohno, H.: Properties of ferromagnetic III–V semiconductors. J. Magn. Mater. 200, 110 1999CrossRefGoogle Scholar
4Dietl, T., Ohno, H., Matsukura, F., Cibert, J.Ferrand, D.: Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287, 1019 2000CrossRefGoogle ScholarPubMed
5Matsumoto, Y., Murakami, M., Shono, T., Hasegawa, T., Fukumura, T., Kawasaki, M., Ahmet, P., Chikyow, T., Koshihara, S-y.Koinuma, H.: Room temperature ferromagnetism in transparent transition metal doped titanium dioxide. Science 291, 854 2001CrossRefGoogle ScholarPubMed
6Sato, K.Katayama-Yoshida, H.: Materials design for transparent ferromagnets with ZnO based magnetic semiconductors. Jpn. J. Appl. Phys. 39, L555 2000CrossRefGoogle Scholar
7Pearton, S.J., Park, Y.D., Abernathy, C.R., Overberg, M.E., Thaler, G.T., Kim, J., Ren, F., Zavada, J.M.Wilson, R.G.: Ferromagnetism in GaN and SiC doped with transition metals. Thin Solid Films 447–448, 493 2004CrossRefGoogle Scholar
8Pearton, S.J., Abernathy, C.R., Overberg, M.E., Thaler, G.T., Nortan, D.P., Theodoropoulou, N., Hebard, A.F., Park, Y.D., Ren, F., Kim, J.Boatner, L.A.: Wide band gap semiconductors and oxides. J.Apply. Phys. 93, 1 2003CrossRefGoogle Scholar
9Lin, H.X., Stephen, Y., Wu, , Singh, R.K., Gu, L., Smith, D.J., Newman, N., Dilley, N.R., Montes, L.Simmonds, M.B.: Observation of ferromagnetism above 900 K in Cr-GaN and Cr-AlN. Appl. Phys. Lett. 85, 4076 2004Google Scholar
10Ueda, K., Tabata, H.Kawai, T.: Magnetic and electric properties of transition metal doped ZnO films. Appl. Phys. Lett. 79, 988 2001CrossRefGoogle Scholar
11Sharma, P., Gupta, A., Rao, K.V., Owens, F.J., Sharma, R., Ahuja, R., Guillen, J.M.O., Johansson, B.Gehring, G.A.: Ferromagnetism above room temperature in bulk and transparent thin films of Mn doped ZnO. Nat. Mater. 2, 673 2003CrossRefGoogle ScholarPubMed
12Pearton, S.J., Heo, W.H., Ivill, M., Norton, D.P.Steiner, T.: Dilute magnetic semiconducting oxides. Semicond. Sci. Technol. 19, R59 2004CrossRefGoogle Scholar
13Rao, C.N.R.Deepak, F.L.: Absence of ferromagnetism in Mn and Co doped ZnO. J. Mater. Chem. 15, 573 2005CrossRefGoogle Scholar
14Norberg, N.S., Kittilstved, K.R., Amonette, J.E., Kukkadapu, R.K., Schwartz, D.A.Gamelin, D.R.: Synthesis of colloidal Mn2+: ZnO quantum dots and high T c ferromagnetic nanocrystalline thin films. J. Am. Chem. Soc. 126, 9387 2004CrossRefGoogle ScholarPubMed
15Meron, T.Markovich, G.: Ferromagnetism in colloidal Mn2+ doped ZnO nanocrystals. J. Phys. Chem. B 109(43), 20232 2005CrossRefGoogle ScholarPubMed
16Jayakumar, O.D., Salunke, H.G., Kadam, R.M., Mohapatra, M., Yashwant, G.Kulshreshtha, S.K.: Magnetism in Mn doped ZnO nanoparticles prepared by coprecipitation method. Nanotechnology 17, 1 2006CrossRefGoogle Scholar
17Venkatesan, M., Fitzgerald, C.B.Coey, J.M.D.: Unexpected magnetism in dielectric oxide. Nature 430, 630 2006CrossRefGoogle Scholar
18Coey, J.M.D.: d0 ferromagnetism. Solid State Sci 7, 660 2005CrossRefGoogle Scholar
19Pearton, S.J., Abernathy, C.R., Thaler, G.T., Ren, F., Hebard, A.F., Park, Y.D., Norton, D.P., Tong, W., Stavola, M., Zavada, J.M.Wilson, R.G.: Effects of defects and doping on wide band gap ferromagnetic semiconductors. Physica B 340–342, 39 2004Google Scholar
20Rodine, E.T.Land, P.L.: Electronic defect structure of single crystal ThO2 by thermoluminescence. Phys. Rev. B: Condens. Matter Mater. Phys. 4, 2710 1971CrossRefGoogle Scholar
21Moore, J.J.Feng, H.J.: Combustion synthesis of advanced materials. Prog. Mater. Sci. 39, 243 1995CrossRefGoogle Scholar
22Mimani, T.Patil, K.C.: Solution combustion synthesis of nanoscale oxides and their composites. Mater. Phys. Mech. 4, 134 2001Google Scholar
23Kulkarni, M.J., Argekar, A.A., Mathur, J.N.Page, A.G.: Chemical separation and ICP-AES determination of seventeen trace metals in thorium oxide matrix using a novel extractant, Cynex-923. Anal. Chim. Acta 370, 163 1998CrossRefGoogle Scholar
24Li, J-G., Ikegami, T., Mori, T.Wada, T.: Reactive Ce0.8RE0.2O1.9 (RE = La, Nd, Sm, Gd, Dy, Y, Ho, Er, and Yb) powders via carbonate coprecipitation: 1. Synthesis and characterization. Chem. Mater. 13, 2913 2001CrossRefGoogle Scholar
25Karmakar, D., Mandal, S.K., Kadam, R.M., Paulose, P.L., Rajarajan, A.K., Nath, T.K., Das, A.K., Dasgupta, I.Das, G.P.: Ferromagnetism in Fe doped ZnO nanocrystals. Phys. Rev. B: Condens. Matter Mater. Phys. 75, 144404 2007CrossRefGoogle Scholar
26Ohno, H., Munekata, H., Penney, T., Von-Molnar, S.Chang, L.L.: Magnetotransport properties of p-type (In, Mn)As diluted magnetic III–V semiconductors. Phys. Rev. Lett. 68(17), 2666 1992CrossRefGoogle ScholarPubMed
27Ahn, G.Y., Park, S.I., Shim, I.B.Kim, C.S.: Mossbauer studies of ferromagnetism in Fe doped ZnO magnetic semiconductor. J. Magn. Magn. Mater. 282, 166 2004CrossRefGoogle Scholar
28Bottcher, R., Langhammer, H.T., Muller, T.Abicht, H.P.: Evaluation of lattice site and valence of manganese in hexagonal BaTiO3 by electron paramagnetic resonance. J. Phys.: Condens. Matter 17, 4925 2005Google Scholar
29Cong, C.J., Liao, L., Li, J.C., Fan, L.X.Zhang, K.L.: Synthesis structure and ferromagnetic properties of Mn doped ZnO nanoparticles. Nanotechnology 16, 981 2005CrossRefGoogle Scholar
30Yang, L.W., Wu, X.L., Huang, G.S., Qiu, T.Yang, Y.M.: In situ synthesis of Mn doped ZnO multileg nano-structures and Mn related Raman vibrations. J. App. Phys. 97, 014308 2005CrossRefGoogle Scholar
31Dhobale, A.R., Bhide, M.K.Sastry, M.D.: Photoacoustic spectroscopy studies of plutonium compounds I: Fluoride, oxalate and hydroxide of Pu(III). Mol. Phys. 92, 307 1997CrossRefGoogle Scholar
32Dhobale, A.R., Bhide, M.K.Sastry, M.D.: Photoacoustic spectroscopy studies of plutonium compounds II: Fluorides, oxalates and hydroxides of Pu(IV) and Pu (VI). Mol. Phys. 92, 311 1997CrossRefGoogle Scholar
33Rubio, J., Chen, Y.Abraham, M.M.: Tetravalent manganese in lithium doped MgO and CaO. J. Chem. Phys. 64(11), 4804 1976CrossRefGoogle Scholar
34Suzuka, H., Hasegawa, S., Tanaka, T., Zhang, G.Hattori, H.: Reverse change in the valence state of manganese ions between tetravalent and divalent states on a sodium mounted magnesium oxide surface. Surf. Sci. 221, L769 1989CrossRefGoogle Scholar
35Owens, F.J.: Ferromagnetism above room temperature in bulk sintered gallium phosphide doped with manganese. J. Phys. Chem. Solids 66, 793 2005CrossRefGoogle Scholar
36Weil, J.A., Bolton, J.R.Wertz, J.E.: Electron Paramagnetic Resonance Elementary Theory and Practical Applications Wiley New York 1994 498Google Scholar
37Moulder, J.F., Stickel, W.F., Sobol, P.E.Bomben, K.D.: Handbook of X-ray Photoelectron Spectroscopy, edited by J. Chastain and R.C. King, Jr. (Physical Electronics, Inc., Eden Prairie, MN) 1995Google Scholar
38Rao, G.V., Reddy, P.Y.Veeraiah, N.: Thermoluminescence studies on Li2O-CaF2-B2O3 glasses doped with manganese ions. Mater. Lett. 57(2), 403 2002CrossRefGoogle Scholar
39Srinivasarao, G.Veeraiah, N.: Study on various properties of PbO-As2O3 glasses containing manganese ions. J. Alloys Compd. 327, 52 2001CrossRefGoogle Scholar
40Dietl, T.: Ferromagnetic semiconductors. Semicond. Sci. Technol. 17, 377 2002CrossRefGoogle Scholar
41Sato, K.Katayama-Yoshida, H.: First principles materials design for semiconductor spintronics. Semicond. Sci. Technol. 17, 367 2002CrossRefGoogle Scholar
42Cho, B.K., Rhyee, J-S., Oh, B.H., Jung, M.H., Kim, H.C., Yoon, Y.K., Kim, J.H.Ekino, T.: Formation of midgap states and ferromagnetism in semiconducting CaB6. Phys. Rev. B: Condens. Matter Mater. Phys. 69, 113202(1–4) 2004CrossRefGoogle Scholar
43Skomski, R.Coey, J.M.D.: Permanent Magnetism IOP Publishing Bristol, UK 1999Google Scholar
44Mahadevan, P.Zunger, A.: Origin of room temperature ferromagnetism in Mn doped semiconducting CdGeP2. arXiv:cond-mat/0111570 v1 29,1–8 2001Google Scholar
45Medvedkin, G.A., Ishibashi, T., Nishi, T., Hayata, K., Hasegaw, Y.Sato, K.: Room temperature ferromagnetism in novel diluted magnetic semiconductor Cd1–xMnxGeP2. Jpn. J. Appl. Phys. 39, L949 2000CrossRefGoogle Scholar
46Coey, J.M.D., Venkatesan, M.Fitzgerald, C.B.: Donar impurity band exchange in dilute ferromagnetic oxides. Nat. Mater. 4, 173 2005CrossRefGoogle Scholar
47Van Schilfgaarde, M.Mryasov, O.N.: Anomalous exchange interactions in III–V diluted magnetic semiconductors. Phys. Rev. B: Condens. Matter Mater. Phys. 63, 233205 2001CrossRefGoogle Scholar