Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T10:50:19.958Z Has data issue: false hasContentIssue false

Pulsed laser deposition of amorphous diamond-like carbon films with ArF (193 nm) excimer laser

Published online by Cambridge University Press:  03 March 2011

Fulin Xiong
Affiliation:
Department of Materials Science and Engineering and Materials Research Center, Northwestern University, 2225 Sheridan Road, Evanston, Illinois 60208
Y.Y. Wang
Affiliation:
Department of Materials Science and Engineering and Materials Research Center, Northwestern University, 2225 Sheridan Road, Evanston, Illinois 60208
V. Leppert
Affiliation:
Department of Materials Science and Engineering and Materials Research Center, Northwestern University, 2225 Sheridan Road, Evanston, Illinois 60208
R.P.H. Chang
Affiliation:
Department of Materials Science and Engineering and Materials Research Center, Northwestern University, 2225 Sheridan Road, Evanston, Illinois 60208
Get access

Abstract

We have deposited hydrogen-free diamond-like amorphous carbon films by ArF (193 nm) pulsed laser ablation of graphite. The deposition process is performed with a laser power density of only 5 × 108 W/cm2 at room temperature without any auxiliary energy source incorporation. The resulting films possess remarkable physical, optical, and mechanical properties that are close to those of diamond and distinct from the graphite target used. The films have a mechanical hardness up to 38 GPa, an optical energy band gap of 2.6 eV, and excellent thermal stability. Analysis of electron energy loss spectroscopy reveals the domination of diamond-type tetrahedral bonding structure in the films with the sp3 bond fraction over 95%. Compared with other reported results of pulsed-laser-deposited diamond-like carbon films, our experimental results confirm that the laser wavelength or photon energy plays a crucial role in controlling the properties of the pulsed-laser-deposited diamond-like carbon films.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Angus, J. C. and Hayman, C. C., Science 241, 913 (1988).CrossRefGoogle Scholar
2Properties and Characterization of Amorphous Carbon Films, edited by Pouch, J. J. and Alterovitz, S. A., Materials Science Forum (Trans. Tech. Publications, Switzerland, 1990), Vols. 52 and 53.CrossRefGoogle Scholar
3Tsai, H. C. and Bogy, D. B., J. Vac. Sci. Technol. A 5, 3287 (1987).CrossRefGoogle Scholar
4Pappas, D. L., Saenger, K. L., Bruley, J., Krakow, W., Cuomo, J. J., Gu, T., and Collins, R. W., J. Appl. Phys. 71, 5675 (1992).CrossRefGoogle Scholar
5Demers, R. T. and Harris, D. G., in Diamond Optic II, edited by Feldman, A. and Holly, S. (SPIE, Bellingham, WA, 1990), Vol. 1146, p. 68.Google Scholar
6Sato, T., Furuno, S., Iguchi, S., and Hanabusa, M., Appl. Phys. A 45, 355 (1988).CrossRefGoogle Scholar
7Krishnaswamy, J., Rengan, A., Narayan, J., Vedam, K., and McHargue, C. J., Appl. Phys. Lett. 54, 2455 (1989).CrossRefGoogle Scholar
8Marquardt, C. L., Williams, R. T., and Nagel, D. J., in Plasma Synthesis and Etching of Electronic Materials, edited by Chang, R. P. H. and Abeles, B. (Mater. Res. Soc. Symp. Proc. 38, Pittsburgh, PA, 1985), p. 325.Google Scholar
9Davanloo, F., Juengerman, E. M., Jander, D. R., Lee, T. J., and Collins, C. B., J. Appl. Phys. 67, 2081 (1990).CrossRefGoogle Scholar
10Collins, C. B., Davanloo, F., Jander, D. R., Lee, T. J., Park, H., and You, J. H., J. Appl. Phys. 69, 7862 (1991).CrossRefGoogle Scholar
11Malshe, A. P., Chaudhari, S. M., Kanetkar, S. M., Ogale, S. B., Rajarshi, S. V., and Kshirsagar, S. T., J. Mater. Res. 4, 1238 (1989).CrossRefGoogle Scholar
12Fujimori, S., Kasai, T., and Inamura, T., Thin Solid Films 92, 71 (1982).CrossRefGoogle Scholar
13Cuomo, J. J., Pappas, D. L., Bruley, J., Doyle, J. P., and Saenger, K. L., J. Appl. Phys. 70, 1706 (1991).CrossRefGoogle Scholar
14Feldman, L. C. and Mayer, J. W., Fundamentals of Surface and Thin Films Analysis (North-Holland, New York, 1986), p. 59.Google Scholar
15Edwards, D. F. and Philipp, H. R., Handbook of Optical Constants of Solids, edited by Palik, E. D. (Academic Press, San Diego, 1985), p. 665.CrossRefGoogle Scholar
16Borghesi, A. and Guizzetti, G., Handbook of Optical Constants of Solids II, edited by Palik, E. D. (Academic Press, Inc., San Diego, 1991), p. 449.Google Scholar
17Savvides, N., J. Appl. Phys. 59, 4133 (1986).CrossRefGoogle Scholar
18Ley, L., in The Physics of Hydrogenated Amorphous Silicon II, edited by Joannopoulos, J. D. and Lucovsky, G. (Springer-Verlag, Berlin, 1984), p. 61.CrossRefGoogle Scholar
19Berger, S. D., McKenzie, D. R., and Martin, P. J., Philos. Mag. Lett. 57, 285 (1988).CrossRefGoogle Scholar
20Cuomo, J. J., Doyle, J. P., Bruley, J., and Liu, J. C., J. Vac. Sci. Technol. 9, 2210 (1991).CrossRefGoogle Scholar
21Silverstein, R. M., Bassler, G. C., and Morrill, T. C., Spectrometric Identification of Organic Compounds, 5th ed. (John Wiley and Sons, New York, 1991), p. 91.Google Scholar
22Lin-Vien, D., Colthup, N. B., Fateley, W. G., and Grasselli, J. G., The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules (Academic Press, New York, 1991).Google Scholar
23Knight, D. S. and White, W. B., J. Mater. Res. 4, 385 (1989).CrossRefGoogle Scholar
24Tuinstra, F. and Koening, J. L., J. Chem. Phys. 53, 1126 (1970).CrossRefGoogle Scholar
25Hark, S. K., Machonkin, M. A., Lansen, F., Slade, M. L., and Weinstein, B. A., AIP Conf. Proc. 120, 465 (1984).CrossRefGoogle Scholar
26Smith, F. W., J. Appl. Phys. 55, 764 (1984).CrossRefGoogle Scholar
27Hubler, G. K., Mater. Res. Bull. XVII, 26 (1992); and review articles therein.CrossRefGoogle Scholar
28Cheung, J. T. and Sankur, H., CRC Crit. Rev. Solid State Mat. Sci. 15, 63 (1988).CrossRefGoogle Scholar
29Koren, G., Gupta, A., Baseman, R. I., Lutwyche, M. I., and Laibowitz, R. B., Appl. Phys. Lett. 55, 2450 (1989).CrossRefGoogle Scholar
30Doll, G. L., Sell, J. A., Salamanaca-Riba, L., and Ballal, A. K., in Laser Ablation for Materials Synthesis, edited by Paine, D. C. and Bravman, J. C. (Mater. Res. Soc. Symp. Proc. 191, Pittsburgh, PA, 1990), p. 129.Google Scholar
31Murray, P. T., Peeler, D. T., and Dempsey, D. V., in Phase Formation and Modification by Beam-Solid Interactions, edited by Was, G. S., Rehn, L. E., and Follstaedt, D. M. (Mater. Res. Soc. Symp. Proc. 235, Pittsburgh, PA, 1992), p. 825.Google Scholar
32Murray, P. T., private communication.Google Scholar
33Thebert-Peeler, D., Murray, P. T., Petry, L., and Haas, T. W., in Phase Formation and Modification by Beam-Solid Interactions, edited by Was, G. S., Rehn, L. E., and Follstaedt, D. M. (Mater. Res. Soc. Symp. Proc. 235, Pittsburgh, PA, 1992), p. 879.Google Scholar