Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T12:02:51.790Z Has data issue: false hasContentIssue false

Porous hydroxyapatite-based obturation materials for dentistry

Published online by Cambridge University Press:  31 January 2011

Witold Brostow*
Affiliation:
Laboratory of Advanced Polymers & Optimized Materials, Department of Materials Science and Engineering, University of North Texas, Denton, Texas 76203-5310
Miriam Estevez
Affiliation:
Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Querétaro, Qro. 76000, México
Haley E. Hagg Lobland
Affiliation:
Laboratory of Advanced Polymers & Optimized Materials, Department of Materials Science and Engineering, University of North Texas, Denton, Texas 76203-5310
Ly Hoang
Affiliation:
Laboratory of Advanced Polymers & Optimized Materials, Department of Materials Science and Engineering, University of North Texas, Denton, Texas 76203-5310
J. Rogelio Rodriguez
Affiliation:
Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Querétaro, Qro. 76000, México; and Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Querétaro, Apdo. Postal 1-798, Qro., 76001, México
Susana Vargar
Affiliation:
Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Querétaro, Qro. 76000, México
*
a)Address all correspondence to this author. e-mail: brostow@unt.edu
Get access

Abstract

New porous biomaterials based on hydroxyapatite (HAp) were designed as obturation materials for dental cavities. Synthetic HAp powder with a particle diameter of 150 μm was agglutinated using three different polyurethane monocomponents (rigid, semi-rigid, and flexible), enabling the matching of their properties to those of real teeth. Alumina particles were also added in some cases. Our new hybrid materials contain up to 60% HAp. Interconnected pores range in size from 100 to 350 μm, while the pore volume fraction varies between 25% and 60%. Most of these materials possess the right morphology for implants and prostheses because their porous structures can be vascularized for bone and tooth ingrowth. Some samples also contain alumina particles to improve the abrasion resistance and to support the stresses produced during mastication. The materials were characterized by x-ray diffraction, scanning electron microscopy, and mechanical testing, along with abrasion, scratch, sliding wear, friction, and staining tests.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Stojanovic, D., Jokic, B., Veljovic, Dj., Petrovic, R., Uskokovic, P.S.Janackovic, Dj.: Bioactive glass-apatite composite coating for titanium implant synthesized by electrophoretic deposition. J. Eur. Ceram. Soc. 27, 1595 2007CrossRefGoogle Scholar
2Balázsi, C., Wéber, F., Kövér, Z., Horváth, E.Németh, C.: Preparation of calcium-phosphate bioceramics from natural resources. J. Eur. Ceram. Soc. 27, 1601 2007CrossRefGoogle Scholar
3Anderson, J.M.Langone, J.J.: Issues and perspectives on the biocompatibility and immunotoxicity evaluation of implanted controlled release systems. J. Control. Release 57, 107 1999CrossRefGoogle ScholarPubMed
4Tanahashi, M., Yao, T., Kokubo, T., Minoda, M., Miyamoto, T., Nakamura, T.Yamamuro, T.: Apatite coated on organic polymers by biomimetic process improvement in its adhesion to substrate by NaOH treatment. J. Appl. Biomater. 5, 339 1994CrossRefGoogle ScholarPubMed
5de Aza, P.N., Guitián, F.de Aza, S.: A new bioactive material which transforms in situ into hydroxyapatite. Acta Mater. 46, 2541 1998CrossRefGoogle Scholar
6Shikinami, Y.Okuno, M.: Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly-L-lactide (PLLA): Part I. Basic characteristics. Biomaterials 20, 859 1999CrossRefGoogle Scholar
7Thomas, M.E., Richter, P.W., van Deventer, T., Crooks, J.Ripamonti, U.: Macroporous synthetic hydroxyapatite bioceramics for bone substitute applications. S. Afr. J. Sci. 95, 359 1999Google Scholar
8Schilke, R., Lisson, J.A., Baub, O.Geurtsen, W.: Comparison of the number and diameter of dentinal tubules in human and bovine dentine by scanning electron microscopic investigation. Arch. Oral Biol. 45(5), 355 2000CrossRefGoogle ScholarPubMed
9Manly, R.S., Hodge, H.C.Ange, L.E.: Density and refractive index studies of dental hard tissues: II. Density distribution curves. J. Dent. Res. 15, 203 1939CrossRefGoogle Scholar
10Patterson, S.A.: In vivo and in vitro studies of the effect of disodium salt of ethylenediamine tetra-acetate on human dentine and its endodontic implications. Oral Surg. 16(1), 83 1987CrossRefGoogle Scholar
11Pashley, D.H.: Dentin-predentin complex and its permeability: Physiology overview. J. Dent. Res. 64, 613 1985CrossRefGoogle Scholar
12Goldman, L.B., Goldman, M., Kronman, J.H.Lin, P.S.: The efficacy of several irrigations solutions for endodontics: A scanning electron microscopy study. Oral Surg. 52(2), 197 1985CrossRefGoogle Scholar
13Cosijns, A., Vervaet, C., Luyten, J., Mullens, S., Siepmann, F., Van Hoorebeke, L., Masschaele, B., Cnudde, V.Remon, J.P.: Porous hydroxyapatite tablets as carriers for low-dosed drugs. Eur. J. Pharmacol. Biopharmacol. 67(2), 498 2007CrossRefGoogle ScholarPubMed
14Gupta, D., Chandra, S.Chandra, S.: Effect of the smeared layer upon dentinal tubule penetration by root canal sealers: A SEM study. Endodontology 8(1), 26 1996Google Scholar
15Teng, S., Chen, L., Guo, Y.Shi, J.: Formation of nano-hydroxyapatite in gelatin droplets and the resulting porous composite microspheres. J. Inorg. Biochem. 101, 686 2007CrossRefGoogle ScholarPubMed
16Piecuch, J.F.: Long-term evaluation of the use of coralline hydroxyapatite in orthognathic surgery. J. Oral Maxillofac. Surg. 56, 941 1998CrossRefGoogle Scholar
17Ozgür Engin, N.Cüney Tas, A.: Manufacture of macroporous calcium hydroxyapatite bioceramics. J. Eur. Ceram. Soc. 19, 2569 1999CrossRefGoogle Scholar
18Rodriguez, L.K.A., Santos, M.N. dos, Pereira, D., Assaf, A.V.Pardi, V.: Carbon dioxide laser in dental caries prevention. J. Dent. 32, 531 2004CrossRefGoogle Scholar
19Lee, H.J., Kim, S.E., Choi, H.W., Kim, C.W., Kim, K.J.Lee, S.C.: The effect of surface-modified nano-hydroxyapatite on biocompatibility of poly (E-caprolactone)/hydroxyapatite nanocomposites. Eur. Polym. J. 43, 1602 2007CrossRefGoogle Scholar
20Uskokovic, P.S., Tang, C.Y., Tsui, C.P., Ignjatovic, N.Uskokovic, D.P.: Micromechanical properties of a hydroxyapatite/poly-L-lactide biocomposite using nanoindentation and modulus mapping. J. Eur. Ceram. Soc. 27, 1559 2007CrossRefGoogle Scholar
21Paul, J.P.: Strength requirements for internal and external prostheses. J. Biomech. 32, 381 1999CrossRefGoogle ScholarPubMed
22Spector, M.: Historical review of porous-coated implants. J. Arthroplasty 2, 163 1987CrossRefGoogle ScholarPubMed
23Caria, P.H.F., Kawachi, E.Y., Bertran, C.A.Camilli, J.A.: Biological assessment of porous-implant hydroxyapatite combines with periosteal grafting in maxillary defects. J. Oral Maxillofac. Surg. 65, 847 2007CrossRefGoogle ScholarPubMed
24Rabello, M.: Putting Additives into Polymers Artliber Sao Paulo 2000 Chap. 10Google Scholar
25He, L.H.Swain, M.V.: Enamel: A “metallic-like” deformable biocomposite. J. Dent. 35, 431 2007CrossRefGoogle ScholarPubMed
26Lin, C-L., Chang, S-H., Wang, J-C.Chang, W-J.: Mechanical interactions of an implant/tooth-supported system under different periodontal supports and number of splinted teeth with rigid and non-rigid connections. J. Dent. 34, 682 2006CrossRefGoogle ScholarPubMed
27Fischman, B.: The rotational aspect of mandibular flexure. J. Prosth. Dent. 64, 483 1990CrossRefGoogle ScholarPubMed
28de la Isla, A., Brostow, W., Bujard, B., Estevez, M., Rodriguez, J.R., Vargas, S.Castaño, V.M.: Nanohybrid scratch resistant coatings for teeth and bone viscoelasticity manifested in tribology. Mater. Res. Innovat. 7(2), 110 2003CrossRefGoogle Scholar
29Estevez, M., Vargas, S., Lobland, H.E. Hagg, de la Isla, A., Brostow, W.Rodrıguez, J. Rogelio: Characterization of novel dental obturation materials. Mater. Res. Innovat. 10(4), 411 2006CrossRefGoogle Scholar
30Castaño, V.M.Rodriguez, R.: Polymer-based hybrid organic-inorganic materials in Performance of Plastics, edited by W. Brostow Hanser Munich 2000 Chap. 24Google Scholar
31Deng, M.Shalaby, S.W.: Polymers as biomaterials in Performance of Plastics, edited by W. Brostow Hanser Munich 2000 Chap. 23Google Scholar
32Hengtrakool, C., Pearson, G.J.Wilson, M.: Interaction between GIC and S Sanguis biofilms: Antibacterial properties and changes of surfaces hardness. J. Dent. 34, 588 2006CrossRefGoogle ScholarPubMed
33Griffin, T.J.Cheung, W.S.: The use of short, wide implants in posterior areas with reduced bone height: A retrospective investigation. J. Prosth. Dent. 92, 139 2004CrossRefGoogle ScholarPubMed
34Freudenthaler, J.W., Tischler, G.K.Burstone, C.J.: Bond strength of fiber-reinforced composite bars for orthodontic attachment. Am. J. Orthod. Dentofacial Orthop. 120, 648 2001CrossRefGoogle ScholarPubMed
35Tancret, F., Bouler, J-M., Chamousset, J.Minois, L-M.: Modelling the mechanical properties of microporous and macroporous biphasic calcium phosphate bioceramics. J. Eur. Ceram. Soc. 26, 3647 2006CrossRefGoogle Scholar
36Aragon, C.E.Bohay, R.N.: The application of alveolar distraction osteogenesis following nonresorbable hydroxyapatite grafting in the anterior maxilla: A clinical report. J. Prosth. Dent. 93, 518 2005CrossRefGoogle ScholarPubMed
37Wool, R.P.: Interfaces and adhesion in Performance of Plastics, edited by W. Brostow Hanser Munich 2000 Chap. 15Google Scholar
38Mülhaupt, R.: Toughened thermoplastics and thermosets in Performance of Plastics edited by W. Brostow Hanser Munich 2000 Chap. 20Google Scholar
39Roslaniec, Z., Broza, G.Schulte, K.: Nanocomposites based on multiblock polyester elastomers (PEEs) and carbon nanotubes (CNTs). Compos. Interfaces 10, 95 2003CrossRefGoogle Scholar
40Bismarck, A., Hofmeier, M.Dörner, G.: Effect of hot water immersion on the performance of carbon reinforced unidirectional poly(ether ether ketone) (PEEK) composites: Stress rupture under end-loaded bending. Composites A 38, 407 2007CrossRefGoogle Scholar
41Kopczynska, A.Ehrenstein, G.W.: Polymeric surfaces and their true surface tension in solids and melts. J. Mater. Ed. 29, 325 2007Google Scholar
42Brostow, W., Duffy, J.V., Lee, G.F.Madejczyk, K.: Parameters of equation of state of polyurethanes from acoustic resonance and isobaric expansivity. Macromolecules 24, 479 1991CrossRefGoogle Scholar
43Mano, E.B.: Polymers as Engineering Materials Edgard Blücher São Paulo 1996Google Scholar
44Griffith, L.G.: Polymeric biomaterials. Acta Mater. 48, 263 2000CrossRefGoogle Scholar
45Brostow, W., Bujard, B., Cassidy, P.E., Hagg, H.E.Montemartini, P.E.: Effects of fluoropolymer addition to an epoxy on scratch depth and recovery. Mater. Res. lnnovat. 6, 7 2001CrossRefGoogle Scholar
46Brostow, W., Deborde, J-L., Jaklewicz, M.Olszynski, P.: Tribology with emphasis on polymers: Friction, scratch resistance and wear. J. Mater. Ed. 25, 119 2003Google Scholar
47Brostow, W.Jaklewicz, M.: Tribology of a polymeric molecular composite: Effects of magnetic field orientation. J. Mater. Res. 19, 1038 2004CrossRefGoogle Scholar
48Estevez, M., Vargas, S., Castaño, V.M., Rodriguez, J.R., Lobland, H.E.Hagg Brostow, W.: Novel wear resistant and low toxicity dental obturation materials. Mater. Lett. 61, 3025 2007CrossRefGoogle Scholar
49Brostow, W., Chonkaew, W., Rapoport, L., Soifer, Y.Verdyan, A.: Grooves in microscratch testing. J. Mater. Res. 22, 2483 2007CrossRefGoogle Scholar
50Brostow, W., Damarla, G., Howe, J.Pietkiewicz, D.: Determination of wear of surfaces by scratch testing. e-Polymers 025, 1 2004Google Scholar
51Bermudez, M.D., Brostow, W., Carrion-Vilches, F.J., Cervantes, J.J.Pietkiewicz, D.: Wear of thermoplastics determined by multiple scratching. e-Polymers 005, 1 2005CrossRefGoogle Scholar
52Brostow, W., Lobland, H.E. HaggNarkis, M.: Sliding wear, viscoelasticicity, and brittleness of polymers. J. Mater. Res. 21, 2422 2006CrossRefGoogle Scholar
53Vujosevic, L.Obradovic-Durici, K.: Porosity of hard dental tissues. Stomatol. Glasnik Serb. 36(2), 95 1989Google ScholarPubMed
54Brostow, W., Cunha, A.M., Quintanilla, J.Simões, R.: Predicting cracking phenomena in molecular dynamics simulations of polymer liquid crystals. Macromol. Theory Simul. 11, 308 20023.0.CO;2-Z>CrossRefGoogle Scholar
55Brostow, W.Simões, R.: Tribological and mechanical behavior of polymers simulated by molecular dynamics. J. Mater. Ed. 27, 19 2005Google Scholar
56Rivera-Muñoz, E., Velázquez, R., Rodríguez, R.: Improvement in mechanical properties of hydroxyapatite objects with controlled porosity made by modified gelcasting process. Mater. Sci. Forum 426–432, 4489 2003 on line at http://www.scientific.net.CrossRefGoogle Scholar
57Giraldo, L.F., Brostow, W., Devaux, E., Lopez, B.L.Perez, L.D.: Scratch and wear resistance of polyamide 6 reinforced with multiwall carbon nanotubes. J. Nanosci. Nanotechnol. 8 (2008, in pressGoogle Scholar
58Rivera, E.M., Araiza, M., Brostow, W., Castaño, V.M., Diaz-Estrada, J.R., Hernández, R.Rodríguez, J.R.: Synthesis of hydroxyapatite from eggshells. Mater. Lett. 41, 128 1999CrossRefGoogle Scholar