Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T14:47:50.752Z Has data issue: false hasContentIssue false

Molecular dynamics simulations of gold-catalyzed growth of silicon bulk crystals and nanowires

Published online by Cambridge University Press:  16 June 2011

Seunghwa Ryu*
Affiliation:
Department of Physics, Stanford University, Stanford, California 94305
Wei Cai
Affiliation:
Department of Mechanical Engineering, Stanford University, Stanford, California 94305
*
a)Address all correspondence to this author. e-mail: shryu@stanford.edu
Get access

Abstract

The growth kinetics of Si bulk crystals and nanowires (NWs) in contact with Au–Si liquids is studied by molecular dynamics simulations using an empirical potential fitted to the Au–Si binary phase diagram. The growth speed v is predicted as a function of Si concentration xSi in the Au–Si liquid at temperature T = 1100 K and as a function of T at xSi = 75%. For both bulk crystals and NWs, the {111} surface grows by the nucleation and expansion of a single two-dimensional island at small supersaturations, whereas the {110} surface grows simultaneously at multiple sites. The top surfaces of the NWs are found to be curved near the edges. The difference in the growth velocity between NWs and bulk crystals can be explained by the shift of the liquidus curve for NWs. For both bulk crystals and NWs, the growth speed diminishes in the low temperature limit because of reduced diffusivity.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Lieber, C.M. and Wang, Z.L.: Functional nanowires. MRS Bull. 32, 99 (2007).CrossRefGoogle Scholar
2.Wong, H.S.P.: Beyond the conventional transistor. IBM J. Res. Dev. 46, 133 (2002).CrossRefGoogle Scholar
3.Schmidt, V., Wittemann, J.V., Senz, S., and Gosele, U.: Silicon nanowires: A review on aspects of their growth and their electrical properties. Adv. Mater. 21, 2681 (2009).CrossRefGoogle ScholarPubMed
4.Dubrovskii, V.G. and Sibirev, N.V.: Growth thermodynamics of nanowires and its application to polytypism of zinc blende III-V nanowires. Phys. Rev. B 77, 035414 (2008).CrossRefGoogle Scholar
5.Adhikari, H., McIntyre, P.C., Marshall, A.F., and Chidsey, C.E.D.: Conditions for subeutectic growth of Ge nanowires by the vapor-liquid-solid mechanism. J. Appl. Phys. 102, 094311 (2007).CrossRefGoogle Scholar
6.Roper, S.M., Davis, S.H., Norris, S.A., Golovin, A.A., Voorhees, P.W., and Weis, M.: Steady growth of nanowires via the vapor-liquid-solid method. J. Appl. Phys. 102, 034304 (2007).CrossRefGoogle Scholar
7.Schmidt, V., Senz, S., and Gosele, U.: Diameter dependence of the growth velocity of silicon nanowires synthesized via the vapor-liquid-solid mechanism. Phys. Rev. B 75, 045335 (2008).CrossRefGoogle Scholar
8.Schwalbach, E.J. and Voorhees, P.W.: Phase equilibrium and nucleation in VLS-grown nanowires. Nano Lett. 8, 3739 (2008).CrossRefGoogle ScholarPubMed
9.Schmidt, V., Senz, S., and Gösele, U.: Diameter-dependent growth direction of epitaxial silicon nanowires. Nano Lett. 5, 931 (2005).CrossRefGoogle ScholarPubMed
10.Irrera, A., Pecora, E.F., and Priolo, F.: Control of growth mechanisms and orientation in epitaxial Si nanowires grown by electron beam evaporation. Nanotechnology 20, 136601 (2009).CrossRefGoogle ScholarPubMed
11.Adhikari, H.: Ph.D. Thesis: Growth and Passivation of Germanium Nanowires, Stanford University (2008).Google Scholar
12.Madras, P., Dailey, E., and Drucker, J.: Kinetically induced kinking of vapor−liquid−solid grown epitaxial Si nanowires. Nano Lett. 9, 3826 (2009).CrossRefGoogle ScholarPubMed
13.Marshall, A.F., Goldthorpe, I.A., Adhikari, H., Koto, M., Wang, Y., Fu, L., Olsson, E., and McIntyre, P.C.: Hexagonal close-packed structure of Au nanocatalysts solidified after Ge nanowire vapor-liquid-solid growth. Nano Lett. (2011, in press).Google Scholar
14.Kuo, C.L. and Clansy, P.: MEAM molecular dynamics study of a gold thin film on a silicon substrate. Surf. Sci. 551, 39 (2004).CrossRefGoogle Scholar
15.Dongare, M., Neurock, M., and Zhigilei, L.V.: Angular-dependent embedded atom method potential for atomistic simulations of metal-covalent systems. Phys. Rev. B 80, 184106 (2009).CrossRefGoogle Scholar
16.Haxhimali, T., Buta, D., Asta, M., Voorhees, P. W., and Hoyt, J. J.: Size-dependent nucleation kinetics at nonplanar nanowire growth interfaces. Phys. Rev. E 80, 050601(R) (2009).CrossRefGoogle ScholarPubMed
17.Ryu, S. and Cai, W.: A gold–silicon potential fitted to the binary phase diagram. J. Phys. Condens. Matter 22, 055401 (2010).CrossRefGoogle Scholar
18.Allen, R.J., Warren, P.B., and ten Wolde, P.R.: Sampling rare switching events in biochemical networks. Phys. Rev. Lett. 94, 018104 (2005).CrossRefGoogle ScholarPubMed
19.Auer, S. and Frenkel, D.: Quantitative prediction of crystal-nucleation rates for spherical colloids: A computational approach. Annu. Rev. Phys. Chem. 55, 333 (2004).CrossRefGoogle ScholarPubMed
20.Irrera, A., Pecora, E.F., and Priolo, F.: Control of growth mechanisms and orientation in epitaxial Si nanowire grown by electron beam evaporation. Nanotechnology 20, 135601 (2009).CrossRefGoogle ScholarPubMed
21.Adhikari, H., Marshall, A.H., Goldthorpe, I.A., Chidsey, C.E., and McIntyre, P.C.: Metastability of Au-Ge liquid nanocatalysts: Ge vapor-liquid-solid nanowire growth far below the bulk eutectic temperature. ACS Nano 1, 415 (2007).CrossRefGoogle ScholarPubMed
22.Baskes, M.I.: Modified embedded-atom potentials for cubic materials and impurities. Phys. Rev. B 46, 2727 (1992).CrossRefGoogle ScholarPubMed
23.Li, J.: AtomEye: An efficient atomistic configuration viewer. Modell. Simul. Mater. Sci. Eng. 11, 173 (2003).CrossRefGoogle Scholar
24.Lowe, C.P.: An alternative approach to dissipative particle dynamics. Europhys. Lett. 47, 145 (1999).CrossRefGoogle Scholar
25.Ghiringhelli, L., Valeriani, C., Meijer, E., and Frenkel, D.: Local structure of liquid carbon controls diamond nucleation. Phys. Rev. Lett. 99, 055702 (2007).CrossRefGoogle ScholarPubMed
26.Markov, I. V.: Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal Growth, and Epitaxy, 2nd ed. (World Scientific, Singapore, 2004).Google Scholar
27.Schwarz, K.W. and Tersoff, J.: From droplets to nanowires: Dynamics of vapor-liquid-solid growth. Phys. Rev. Lett. 102, 206102 (2009).CrossRefGoogle ScholarPubMed