Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T07:54:20.824Z Has data issue: false hasContentIssue false

Generation of silver/palladium nanoparticles by liquid flame spray

Published online by Cambridge University Press:  03 March 2011

H. Keskinen*
Affiliation:
Aerosol Physics Laboratory, Institute of Physics, Tampere University of Technology, P.O. Box 692, FIN-33101 Tampere, Finland
J.M. Mäkelä
Affiliation:
Aerosol Physics Laboratory, Institute of Physics, Tampere University of Technology, P.O. Box 692, FIN-33101 Tampere, Finland
M. Vippola
Affiliation:
Institute of Material Science, Tampere University of Technology, P.O. Box 589, FIN-33101 Tampere, Finland
M. Nurminen
Affiliation:
Aerosol Physics Laboratory, Institute of Physics, Tampere University of Technology, P.O. Box 692, FIN-33101 Tampere, Finland
J. Liimatainen
Affiliation:
Aerosol Physics Laboratory, Institute of Physics, Tampere University of Technology, P.O. Box 692, FIN-33101 Tampere, Finland
T. Lepistö
Affiliation:
Institute of Material Science, Tampere University of Technology, P.O. Box 589, FIN-33101 Tampere, Finland
J. Keskinen
Affiliation:
Aerosol Physics Laboratory, Institute of Physics, Tampere University of Technology, P.O. Box 692, FIN-33101 Tampere, Finland
*
a)Address all correspondence to this author. e-mail: helmi.keskinen@tut.fi
Get access

Abstract

Ag–Pd alloy nanoparticles have been generated from silver and palladium nitrate precursors using a high temperature aerosol method, the liquid flame spray (LFS) process. In the LFS process, a spray aerosol of precursor liquid is introduced into a high-temperature H2–O2 flame. The primary micron-sized spray droplets evaporatein the flame, and the final particulate product is a result of the nucleation of the pure metal vapors shortly after the flame. In the study, three Ag–Pd molar ratios—10:90, 50:50, and 90:10—were used in the precursor. As a result of the synthesis, metalalloy nanoparticles with practically the same concentration ratios, correspondingly, were produced with the method. In the experiments, metal mass flow rates of 0.01–0.8 g/min were covered. The size of the particles was determined to be in the rangeof 10–50 nm by aerosol instrumentation. The particles were spherical and slightly agglomerated. It was concluded that the particle size can be controlled via the total precursor mass flow rate, and the composition can be controlled by the molar ratio of Ag and Pd compounds in the precursor liquid.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Newhamn, R.E. and Shrout, T.R. in Kirk-Othmer Encyclopedia of Chemical Technology (John Wiley Interscience, New York, 1991), 1, p. 601Google Scholar
2Kodas, T.T. and Hampden-Smith, M.J., Aerosol Processing of Materials 10 and 12, (Wiley-VCH, New York, 1999)Google Scholar
3Delarue, E., Mostafavi, M., Delcourt, M.O. and Regnault, D., Characterization of silver-palladium submicronic powders. J. Mater. Sci. 30, 628 (1995).Google Scholar
4Nagashima, K., Himeda, T. and Kato, A., Properties of conductive films made from fine spherical silver-palladium alloy particles. J. Mater Sci. 26,2477 (1991).CrossRefGoogle Scholar
5Pluym, C.T., Kodas, T.T., Wang, L-M. and Glicksman, H.D., Silver-palladium alloy particle production by spray pyrolysis. J. Mater. Res. 10, 1661 (1995).CrossRefGoogle Scholar
6Iida, N., Nakayama, K., Lenggoro, M. and Okuyama, K., Oxidation behavior of spray pyrolyzed Ag-Pd alloy particle. J. Soc. Powder Technol., Japan 38, 542 (2001).CrossRefGoogle Scholar
7Pratsinis, S.E., Flame aerosol synthesis of ceramic powders. Energy Combust. Sci. 24, 197 (1998).Google Scholar
8Mädler, L., Stark, W.J. and Pratsinis, S.E., Flame-made ceria nanoparticles. J. Mater Res. 17, 1356 (2002).CrossRefGoogle Scholar
9Singh, Y., Javier, J.R.N., Ehrman, S.H., Magnusson, M.H. and Deppert, K., Approaches to increasing yield in evaporation/condensation nanoparticle generation. J. Aerosol Sci. 33, 1309 (2002).CrossRefGoogle Scholar
10 J. Tikkanen, M. Eerola, V. Pitkänen, and M. Rajala: Method and Equipment for Spraying Material, Patent No. 98832, 1997 (in Finnish).Google Scholar
11Mädler, L., Kammler, H.K., Mueller, R. and Pratsinis, S.E., Controlled synthesis of nanostructured particles by flame spray pyrolysis. J. Aerosol Sci. 33,369 (2002).CrossRefGoogle Scholar
12Tikkanen, J., Gross, K.A., Berndt, C.C., Pitkänen, V., Keskinen, J., Raghu, S., Rajala, M. and Karthikeyan, J., Characteristics of the liquid flame spray process. Surf. Coatings Technol. 90, 210 (1997).CrossRefGoogle Scholar
13Karthikeyan, J., Berndt, C.C., Tikkanen, J., Reddy, S. and Herman, H., Plasma synthesis of nanomaterial powders and deposits. Mater. Sci. Eng. A238,275 (1997).CrossRefGoogle Scholar
14Karthikeyan, J., Berndt, C.C., Tikkanen, J., Wang, J.Y., King, A.H. and Herman, H., Preparation of nanophase materials by thermal spray processing of liquid precursors. Nanostruct. Mater. 9, 137 (1997).Google Scholar
15Gross, K.A., Tikkanen, J., Keskinen, J., Pitkänen, V., Eerola, M., Siikamäki, R. and Rajala, M., Liquid based flame spraying on hot glass surfaces. J. Therm. Spray Technol. 8, 583 (1999).CrossRefGoogle Scholar
16 H. Keskinen, J.M. Mäkelä, J.K. Liimatainen, M. Nurminen, and J. Keskinen: Generation of palladium nanoparticles by liquid flame spray for catalytic applications, Finnish association for aerosol research, Finland, Abstract to Czech-Finnish Aerosol Symposium 24-26.5. 2002, Prague.Google Scholar
17 J.M. Mäkelä, H. Keskinen, T. Forsblom, and J. Keskinen: Generation of metal and metal oxide nanoparticles by liquid flame spray. J. Mater. Sci. (2003, in press).Google Scholar
18Binary Alloy Phase Diagrams , edited by Massalski, T.B., (American Society for Metals, New York, 1986), pp. 5455Google Scholar
19Koch, M., Lödding, H., Mölter, M. and Munzinger, F., Verdünnungssystem für die messung hochkonzentrierter aerosol cmit optischen partikelzählern. Staub-Reinhaltung der Luft. 48, 341 (1988).Google Scholar
20Wang, S.C. and Flagan, R.C., Scanning electrical mobility spectrometer. Aerosol Sci. Technol. 13, 230 (1990).Google Scholar
21Cheng, Y-S., Yeh, H-C. and Kanapilly, G.M., Collection efficiencies of a point-to-plane electrostatic precipitator. Am. Ind. Hygiene Ass. 42, 605 (1981).CrossRefGoogle Scholar
22Keskinen, J., Pietarinen, K. and Lehtimäki, M., Electrical low pressure impactor. J. Aerosol Sci. 23, 353 (1992).Google Scholar
23Ehrman, S.H. and Friedlander, S.K., Bimodal distributions of two component metal oxide aerosols. Aerosol Sci. Technol, 30, 259 (1999).Google Scholar
24Park, K.Y., Jang, H.D. and Choi, C.S., Vapor-Phase synthesis and characterization of ultrafine iron powders. Aerosol Sci. Technol. 28, 215 (1998).Google Scholar
25Windeler, R.S., Friedlander, S.K. and Lehtinen, K.E.J., Production of nanometer-sized metal oxide particles by gas phase reaction in a free jet. I: Experiment systems and results. Aerosol Sci. Technol. 27, 174 (1997).Google Scholar
26Zhang, L., Ranade, M.B. and Gentry, J.M., Synthesis of nanophase silver particles using an aerosol reactor. J. Aerosol Sci. 33,1559 (2002).Google Scholar
27Lehtinen, K.E.J., Windeler, R.S. and Friedlander, S.K., Prediction of nanoparticle size and the onset of dendrite formation using the method of characteristic times. J. Aerosol Sci. 27, 883 (1996).Google Scholar