Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T11:39:31.277Z Has data issue: false hasContentIssue false

Electrical characterization of epitaxial FeSi2 nanowire on Si (110) by conductive-atomic force microscopy

Published online by Cambridge University Press:  31 January 2011

Shengde Liang*
Affiliation:
Department of Chemistry, Renmin University of China, Beijing 100872, China
Brian A. Ashcroft
Affiliation:
Department of Physics, Arizona State University, Tempe, Arizona 85287
*
a)Address all correspondence to this author. e-mail: sliang@ruc.edu.cn
Get access

Abstract

We used conductive-atomic force microscopy (c-AFM) for electrical characterization of self-assembled epitaxial iron silicide nanowires (NWs) on Si (110). The NWs, 6 nm high by 10 nm wide and several micrometers long, were partially covered by a macro-gold-pad as one electrode. Another electrode is the conductive AFM tip. The resistance of a single FeSi2 NW was measured to be 29.7 kΩ, corresponding to a resistivity of 150 ± 30 μΩ·cm. A Schottky barrier formed between NWs and silicon substrate was clearly demonstrated, which offers electrical isolation for NWs. An equivalent circuit model based on the Schottky barrier was proposed and was correlated with measurement results. This simple electrical characterization approach may find wide applications for various one-dimensional nanostructures.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kittl, J.A., Hong, Q.Z.Self-aligned Ti and Co silicides for high performance sub-0.18 μm CMOS technologies. Thin Solid Films 320, 110 (1998)CrossRefGoogle Scholar
2.Reeson, K.J., Sharpe, J., Harry, M., Leong, D., McKinty, C., Kewell, A., Lourenco, M., Chen, Y.L., Shao, G., Homewood, K.P.Is there a future for semiconducting silicides? Microelectron. Eng. 50, 223 (2000)CrossRefGoogle Scholar
3.Preinesberger, C., Vandre, S., Kalka, T., Daehne-Prietsch, M.Formation of dysprosium silicide wires on Si(001). J. Phys. D: Appl. Phys. 31, L43 (1998)CrossRefGoogle Scholar
4.He, Z.A., Smith, D.J., Bennett, P.A.Endotaxial silicide nanowires. Phys. Rev. Lett. 93, 256102 (2004)CrossRefGoogle ScholarPubMed
5.Okino, H., Matsuda, I., Hobara, R., Hosomura, Y., Hasegawa, S., Bennett, P.A.In situ resistance measurements of epitaxial cobalt silicide nanowires on Si(110). Appl. Phys. Lett. 86, 233108 (2005)CrossRefGoogle Scholar
6.Saitoh, W., Yamagami, S., Itoh, A., Asada, M.A 35 nm metal gate p-type metal oxide semiconductor field-effect transistor with PtSi Schottky source/drain on separation by implanted oxygen substrate. Jpn. J. Appl. Phys., Part 2 38, L629 (1999)CrossRefGoogle Scholar
7.Snyder, J.P., Helms, C.R., Nishi, Y.Experimental investigation of a PtSi source and drain field emission transistor. Appl. Phys. Lett. 67, 1420 (2002)CrossRefGoogle Scholar
8.Wu, Y., Xiang, J., Yang, C., Lu, W., Lieber, C.M.Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures. Nature 430, 61 (2004)CrossRefGoogle ScholarPubMed
9.Han, M., Tanaka, M., Takeguchi, M., Furuya, K.Rod-like β-FeSi2 phase grown on Si (111) substrate. Thin Solid Films 461, 136 (2004)CrossRefGoogle Scholar
10.Wan, Q., Wang, T.H., Lin, C.L.Synthesis and optical properties of semiconducting β-FeSi2 nanocrystals. Appl. Phys. Lett. 82, 3224 (2003)CrossRefGoogle Scholar
11.Bost, M.C., Mahan, J.E.Optical-properties of semiconducting iron disilicide thin-films. J. Appl. Phys. 58, 2696 (1985)CrossRefGoogle Scholar
12.Birdwell, A.G., Glosser, R., Leong, D.N., Homewood, K.P.Raman investigation of ion beam synthesized β-FeSi2. J. Appl. Phys. 89, 965 (2001)CrossRefGoogle Scholar
13.Leong, D., Harry, M., Reeson, K.J., Homewood, K.P.A silicon/iron-disilicide light-emitting diode operating at a wavelength of 1.5 μm. Nature 387, 686 (1997)CrossRefGoogle Scholar
14.Rowe, D.CRC Handbook of Thermoelectrics (CRC Press, Boca Raton, FL 1994)Google Scholar
15.Comrie, C.M., Falepin, A., Richard, O., Bender, H., Vantomme, A.Metastable iron silicide phase formation by pulsed laser annealing. J. Appl. Phys. 95, 2365 (2004)CrossRefGoogle Scholar
16.Lee, K.S., Mo, Y.H., Nahm, K.S., Shim, H.W., Suh, E.K., Kim, J.R., Kim, J.J.Anomalous growth and characterization of carbon-coated nickel silicide nanowires. Chem. Phys. Lett. 384, 215 (2004)CrossRefGoogle Scholar
17.O'Hayre, R., Feng, G., Nix, W.D., Prinz, F.B.Quantitative impedance measurement using atomic force microscopy. J. Appl. Phys. 96, 3540 (2004)CrossRefGoogle Scholar
18.Bietsch, A., Michel, B.Size and grain-boundary effects of a gold nanowire measured by conducting atomic force microscopy. Appl. Phys. Lett. 80, 3346 (2002)CrossRefGoogle Scholar
19.Oh, J., Nemanich, R.J.Current-voltage and imaging of TiSi2 islands on Si(001) surfaces using conductive-tip atomic force microscopy. J. Appl. Phys. 92, 3326 (2002)CrossRefGoogle Scholar
20.Casuso, I., Fumagalli, L., Samitier, J., Padros, E., Reggiani, L., Akimov, V., Gomila, G.Electron transport through supported biomembranes at the nanoscale by conductive atomic force microscopy. Nanotechnology 18, 465503 (2007)CrossRefGoogle ScholarPubMed
21.Baldacchini, C., Cannistraro, S.Conductive atomic force microscopy investigation of transverse current across metallic and semiconducting single-walled carbon nanotubes. Appl. Phys. Lett. 91, 122103 (2007)CrossRefGoogle Scholar
22.Bussian, D.A., O'Dea, J.R., Metiu, H., Buratto, S.K.Nanoscale current imaging of the conducting channels in proton exchange membrane fuel cells. Nano Lett. 7, 227 (2007)CrossRefGoogle ScholarPubMed
23.Ferry, F.M.Improving the Accuracy of AFM Force Measurements: The Thermal Tune Solution to the Cantilever Spring Constant Problem (2005 http://www1.eere.energy.gov/solar/quantum_efficiency.html)Google Scholar
24.von Kanel, H., Stalder, R., Sirringhaus, H., Onda, N., Henz, J.Epitaxial silicides with the fluorite structure. Appl. Surf. Sci. 53, 196 (1991)CrossRefGoogle Scholar
25.Christensen, N.E.Electronic structure of β-FeSi2. Phys. Rev. B 42, 7148 (1990)CrossRefGoogle ScholarPubMed
26.Liang, S., Islam, R., Smith, D.J., Bennett, P.A., O'Brien, J.R., Taylor, B.Magnetic iron silicide nanowires on Si(110). Appl. Phys. Lett. 88, 113111 (2006)CrossRefGoogle Scholar
27.Liang, S., Islam, R., Smith, D.J., Bennett, P.A.Phase transformation in FeSi2 nanowires. J. Cryst. Growth 295, 166 (2006)CrossRefGoogle Scholar
28.Konstantinidis, D.A., Aifantis, E.C.On the “anomalous” hardness of nanocrystalline materials. Nanostruct. Mater. 10, 1111 (1998)CrossRefGoogle Scholar
29.Smirnov, A., Tove, P.A., Pires, J.D.S., Norde, H.Barrier height of Re and Os contacts to n-silicon. Appl. Phys. Lett. 36, 313 (1980)CrossRefGoogle Scholar
30.Tokarev, V.V., Kibardin, A.V., Pyatkova, T.M., Zarovsky, D.I.Nickel, cobalt and iron silicide formation stimulated by argon implantation. Appl. Surf. Sci. 44, 235 (1990)CrossRefGoogle Scholar
31.Walton, A.S., Allen, C.S., Critchley, K., Gorzny, M.L., McKendry, J.E., Brydson, R.M.D., Hickey, B.J., Evans, S.D.Four-probe electrical transport measurements on individual metallic nanowires. Nanotechnology 18, 065204 (2007)CrossRefGoogle Scholar
32.Fuchs, K.The conductivity of thin metallic films according to the electron theory of metals. Proc. Cambridge Philos. Soc. 1, 100 (1938)CrossRefGoogle Scholar
33.Sondheimer, E.The mean free path of electrons in metals. Adv. Phys. 1, 1 (1952)CrossRefGoogle Scholar
34.Henz, J.H.J., Ospelt, M., von Kanel, H.Fabrication and electrical properties of ultrathin CoSi2/Si heterostructures. Surf. Sci. 9, 133 (1990)Google Scholar
35.Lin, J.F., Bird, J.P., He, Z., Bennett, P.A., Smith, D.J.Signatures of quantum transport in self-assembled epitaxial nickel silicide nanowires. Appl. Phys. Lett. 85, 281 (2004)CrossRefGoogle Scholar
36.Song, Y., Schmitt, A.L., Jin, S.Ultralong single-crystal metallic Ni2Si nanowires with low resistivity. Nano Lett. 7, 965 (2007)CrossRefGoogle ScholarPubMed