Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T15:03:13.189Z Has data issue: false hasContentIssue false

Comparison of photocatalytic activities of two kinds of lead magnesium niobate for decomposition of organic compounds under visible-light irradiation

Published online by Cambridge University Press:  31 January 2011

Tetsuya Kako
Affiliation:
Photocatalytic Materials Center, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
Jinhua Ye*
Affiliation:
Photocatalytic Materials Center, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
*
a)Address all correspondence to this author. e-mail: Jinhua.Ye@nims.go.jp
Get access

Abstract

Two new oxide photocatalysts in the Pb–Mg–Nb ternary system, Pb3MgNb2O9 (PMN) and Pb1.83Mg0.29Nb1.71O6.39, have been synthesized, and their photophysical and photocatalytic properties were investigated for the first time. The band gaps of PMN and Pb1.83Mg0.29Nb1.71O6.39 were estimated to be 3.2 and 2.8 eV, respectively, from their absorption spectra. The photocatalytic activity evaluated from the decomposition of 2-propanol into acetone under visible-light irradiation indicated that Pb1.83Mg0.29Nb1.71O6.39 exhibited at least 20 times higher activity than PMN and has a strong oxidizing potential to mineralize organic compounds.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Fujishima, A., Hashimoto, K.Watanabe, T.: TiO2hotocatalysis Fundamentals and Applications BKC Inc. Tokyo 1999Google Scholar
2Hoffmann, M.R., Martin, S.T., Choi, W.Y.Bahnemann, D.W.: Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69 1995CrossRefGoogle Scholar
3Serpone, N., Lawlee, D., Disdier, J.Hermann, J.M.: Spectroscopic, photoconductivity, and photocatalytic studies of TiO2 colloids: Naked and with the lattice doped with Cr3+, Fe3+, and V5+ cations. Langmuir 10, 643 1994CrossRefGoogle Scholar
4Choi, W.Y., Termin, A.Hoffmann, M.R.: The role of metal-ion dopants in quantum-sized TiO2: Correlation between photoreactivity and charge-carrier recombination dynamics. J. Phys. Chem. 98, 13669 1994CrossRefGoogle Scholar
5Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K.Taga, Y.: Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269 2001CrossRefGoogle ScholarPubMed
6Irie, H., Watanabe, Y.Hashimoto, K.: Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst. Chem. Lett. (Jpn.) 32, 772 2003CrossRefGoogle Scholar
7Sakatani, Y., Ando, H., Okusako, K., Koike, H., Nunoshige, J., Takata, T., Kondo, J.N., Hara, M.Domen, K.: Metal ion and N co-doped TiO2 as a visible-light photocatalyst. J. Mater. Chem. 19, 2100 2004Google Scholar
8Miyauchi, M., Ikezawa, A., Tobimatsu, H., Irie, H.Hashimoto, K.: Zeta potential and photocatalytic activity of nitrogen doped TiO2 thin films. Phys. Chem. Chem. Phys. 6, 865 2004CrossRefGoogle Scholar
9Kim, H.G., Hwang, D.W.Lee, J.S.: An undoped, single-phase oxide photocatalyst working under visible light. J. Am. Chem. Soc. 126, 8912 2004CrossRefGoogle ScholarPubMed
10Kako, T.Ye, J.: Photocatalytic decomposition of acetaldehyde over rubidium bismuth niobates under visible light irradiation. Mater. Trans. 46, 2694 2005CrossRefGoogle Scholar
11Luan, J.F., Hao, X.P., Zheng, S.R., Luan, G.Y.Wu, X.S.: Structural, photophysical and photocatalytic properties of Bi2MTaO7 (M = La and Y). J. Mater. Sci. 41, 8001 2006CrossRefGoogle Scholar
12Kato, H., Kobayashi, H.Kudo, A.: Role of Ag+ in the band structures and photocatalytic properties of AgMO3 (M: Ta and Nb) with the perovskite structure. J. Phys. Chem. B 106, 12441 2002CrossRefGoogle Scholar
13Cai, M.Q., Yin, Z., Zhang, M.S.Li, Y.Z.: Electronic structure of the ferroelectric-layered perovskite bismuth titanate by ab initio calculation within density-functional theory. Chem. Phys. Lett. 399, 89 2004CrossRefGoogle Scholar
14Finlayson, A.P., Tsaneva, V.N., Lyons, L., Clark, M.Glowacki, B.A.: Evaluation of Bi-W-oxides for visible light photocatalysis. Phys. Status Solidi A 203, 327 2006CrossRefGoogle Scholar
15Tang, J.W.Ye, J.H.: Photocatalytic and photophysical properties of visible-light-driven photocatalyst ZnBi12O20. Chem. Phys. Lett. 410, 104 2005CrossRefGoogle Scholar
16Wang, D.F., Tang, J.W., Zou, Z.G.Ye, J.H.: Photophysical and photocatalytic properties of a new series of visible-light-driven photocatalysts M3V2O8 (M = Mg, Ni, Zn). Chem. Mater. 17, 5177 2005CrossRefGoogle Scholar
17Wang, H.C.Schulze, W.A.: The role of excess magnesium-oxide or lead-oxide in determining the microstructure and properties of lead magnesium niobate. J. Am. Ceram. Soc. 73, 825 1990CrossRefGoogle Scholar
18Shrout, T.R.Swartz, S.L.: Dielectric-properties of pyrochlore lead magnesium niobate. Mater. Res. Bull. 18, 663 1983CrossRefGoogle Scholar
19Ohko, Y., Hashimoto, K.Fujishima, A.: Kinetics of photocatalytic reactions under extremely low-intensity UV illumination on titanium dioxide thin films. J. Phys. Chem. A 101, 8057 1997CrossRefGoogle Scholar
20Wang, D.F., Zou, Z.G.Ye, J.H.: A new spinel-type photocatalyst BaCr2O4 for H2 evolution under UV and visible light irradiation. Chem. Phys. Lett. 373, 191 2003CrossRefGoogle Scholar
21Segall, M.D., Lindan, P.J.D., Probert, M.J., Pickard, C.J., Hasnip, P.J., Clark, S.J.Payne, M.C.: First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter 14, 2717 2002Google Scholar
22McClune, W.F., Mrose, M.E., Post, B., Weissmann, S., McMurdie, H.F., Wong, W.Evans, E.: Powder Diffraction File, Inorganic and Organic 37 JCPDS-International Center for Diffraction Data Swarthmore, PA 1987 25Google Scholar
23McClune, W.F., Mrose, M.E., Post, B., Weissmann, S.McMurdie, H.F.: Powder Diffraction File, Inorganic 27–28 JCPDS-International Center for Diffraction Data Swarthmore, PA 1987 413Google Scholar
24Du, H.L., Wang, H.Yao, X.: Observations on structural evolution and dielectric properties of oxygen-deficient pyrochlores. Ceram Int. 30, 1383 2004CrossRefGoogle Scholar
25Prosandeev, S.A., Cockayne, E., Burton, B.P., Kamba, S., Petzelt, J., Yuzyuk, Y., Katiyar, R.S.Vakhrushev, S.B.: Lattice dynamics in PbMg1/3Nb2/3O3. Phys. Rev. B: Condens. Matter 70, 134110 2004CrossRefGoogle Scholar
26Verbaere, A., Piffard, Y., Ye, Z.G.Husson, E.: Lead magnoniobate crystal structure determination. Mater. Res. Bull. 27, 1227 1992CrossRefGoogle Scholar
27Bernotat-Wurf, H.Hoffmann, W.: The crystal-structures of pyrochlore type lead niobate. Z. Kristallogr. 158, 101 1982Google Scholar
28Yang, K., Wang, C.L.Li, J.C.: Electronic structure of relaxor PMN. Integr. Ferroelectr. 78, 113 2006CrossRefGoogle Scholar
29Mergen, A.Kayed, T.S.: Electrical behavior of Pb1.83Mg0.29Nb1.71O6.39 pyrochlore ceramics. Mater. Lett. 58, 1692 2004CrossRefGoogle Scholar
30Ubic, R.Reaney, I.M.: Microwave properties of doped lead pyroniobate. J. Eur. Ceram. Soc. 21, 2659 2001CrossRefGoogle Scholar
31Maruyama, Y., Irie, H.Hashimoto, K.: Visible light sensitive photocatalyst, delafossite structured alpha-AgGaO2. J. Phys. Chem. B 110, 23274 2006CrossRefGoogle Scholar
32Ishikawa, A., Takata, T., Matsumura, T., Kondo, J.N., Hara, M., Kobayashi, H.Domen, K.: Oxysulfides Ln2Ti2S2O5 as stable photocatalysts for water oxidation and reduction under visible-light irradiation. J. Phys. Chem. B 108, 2637 2004CrossRefGoogle Scholar
33Tsuji, I., Kato, H.Kudo, A.: Photocatalytic hydrogen evolution on ZnS-CuInS2-AgInS2 solid solution photocatalysts with wide visible light absorption bands. Chem. Mater. 18, 1969 2006CrossRefGoogle Scholar
34Bacsa, R., Kiwi, J., Ohno, T., Albers, P.Nadtochenko, V.: Preparation, testing and characterization of doped TiO2 active in the peroxidation of biomolecules under visible light. J. Phys. Chem. B 109, 5994 2005CrossRefGoogle ScholarPubMed
35Yin, J., Zou, Z.Ye, J.: Synthesis and photophysical properties of barium indium oxides. J. Mater. Res. 17, 2201 2002CrossRefGoogle Scholar
36Kato, H., Matsudo, N.Kudo, A.: Photophysical and photocatalytic properties of molybdates and tungstates with a scheelite structure. Chem. Lett. (Jpn.) 33, 1216 2004CrossRefGoogle Scholar
37Murase, T., Irie, H.Hashimoto, K.: Visible light sensitive photocatalysts, nitrogen-doped Ta2O5 powders. J. Phys. Chem. B 108, 15803 2004CrossRefGoogle Scholar