Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T10:33:46.085Z Has data issue: false hasContentIssue false

Analysis of crystallization behavior of Fe48Cr15Mo14Y2C15B6 bulk metallic glass by synchrotron radiation

Published online by Cambridge University Press:  31 January 2011

T.A. Baser
Affiliation:
Dipartimento di Chimica, IFM and NIS/INSTM/CNISM, Università di Torino, 10125 Torino, Italy
M. Baricco*
Affiliation:
Dipartimento di Chimica, IFM and NIS/INSTM/CNISM, Università di Torino, 10125 Torino, Italy
S. Enzo
Affiliation:
Dipartimento di Chimica, Università di Sassari, 07100 Sassari, Italy
G. Vaughan
Affiliation:
European Synchrotron Radiation Facility (ESRF), F-38043 Grenoble Cedex, France
A.R. Yavari
Affiliation:
Laboratorie de Thermodynamique et Physico-chimie Metallurgique (LTPCM-UMR 5614), Institut National Polytechnique de Grenoble, CNRS, 38402 Grenoble, France
*
a)Address all correspondence to this author. e-mail: marcello.baricco@unito.it
Get access

Abstract

The amorphous-to-crystalline transformation behavior of Fe48Cr15Mo14Y2C15B6 bulk metallic glasses was first investigated by high-temperature differential scanning calorimetry. Three events were detected with onset temperatures at 922, 975, and 1036 K, respectively. In situ synchrotron radiation x-ray diffraction patterns were collected during continuous heating and analyzed with the Rietveld approach. To describe simultaneously the amorphous fraction and crystallization products as a function of temperature, a paracrystalline structure-factor model was developed. It was included for quantitative evaluation of the amorphous phase, together with the structure factor of Cr23C6- and Fe3Mo3C-type phases observed during crystallization. Volume fractions of phases as well as lattice parameters, average lattice disorder, and crystallite size of the crystallized phases have been followed as a function of temperature. In this way, the structure evolution and thermal events have been closely inspected and accounted for by a crystallization mechanism.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Hildal, K., Sekido, N.Perepeczko, J.H.: Critical cooling rate for Fe48Cr15Mo14Y2C15B6 bulk metallic glass formation. Intermetallics 14, 898 2006CrossRefGoogle Scholar
2Lu, Z.P., Liu, C.T., Thompson, J.R.Porter, W.D.: Structural amorphous steels. Phys. Rev. Lett. 92, 245503 2004CrossRefGoogle ScholarPubMed
3Baser, T.A.Baricco, M.: Fe-based bulk metallic glasses with Y addition. J. Alloys Compd. 434, 176 2007CrossRefGoogle Scholar
4Ponnambalam, V., Poon, S.J.Shiflet, G.J.: Fe-based bulk metallic glasses with diameter thickness larger than one centimetre. J. Mater. Res. 19, 1320 2004CrossRefGoogle Scholar
5Chen, Q.J., Fan, H.B., Shen, J., Sun, J.F.Lu, Z.P.: Critical cooling rate and thermal stability of Fe–Co–Zr–Y–Cr–Mo–B amorphous alloy. J. Alloys Compd. 407, 125 2006CrossRefGoogle Scholar
6Young, R.A.: The Rietveld Method Oxford University Press Oxford 1995Google Scholar
7Ruland, W.: X-ray determination of crystallinity and diffuse disorder scattering. Acta Crystallogr. 14, 1180 1961CrossRefGoogle Scholar
8Vonk, C.G.: Computerization of Ruland’s x-ray method for determination of the crystallinity in polymers. J. Appl. Crystallogr. 6, 148 1973CrossRefGoogle Scholar
9Wagner, C.N.J.: Direct methods for the determination of atomic-scale structure of amorphous solids (x-ray, electron, and neutron scattering). J. Non-Cryst. Solids 31, 1 1978CrossRefGoogle Scholar
10Structure Determination from Powder Diffraction Data. International Union of Crystallography Monographs in Crystallography, edited by W.I.F. David, K. Shankland, L.B. McCusker, and Ch. Baerlocher Oxford University Press 2006Google Scholar
11Gaskell, P.H., Eckersley, M.C., Barnes, A.C.Chieux, P.: Medium-range order in the cation distribution of a calcium silicate glass. Nature 350, 675 1991CrossRefGoogle Scholar
12Cocco, G., Enzo, S., Sampoli, M.Schiffini, L.: Structural investigation of Pd76B24 glassy alloy: Local order parameters from a semi-empirical mathematical model. J. Non-Cryst. Solids 61-62, 577 1984CrossRefGoogle Scholar
13Sietsma, J.Thijsse, B.: Collective and specific types of short and medium range order in metallic glasses. J. Non-Cryst. Solids 101, 135 1988CrossRefGoogle Scholar
14Hosemann, R.Bagchi, S.N.: Direct Analysis of Diffraction by Matter North-Holland Amsterdam, The Netherlands 1962Google Scholar
15Hahn, Th.: International Tables for Crystallography: Space-Group Symmetry International Union of Crystallography 2006CrossRefGoogle Scholar
16Le Bail, A.: Modelling the silica glass structure by Rietveld method. J. Non-Cryst. Solids 183, 39 1995CrossRefGoogle Scholar
17Lutterotti, L., Ceccato, R., Dal Maschio, R.Pagani, E.: Quantitative analysis of silicate glass in ceramic materials by the Rietveld method. Mater. Sci. Forum 278–281, 87 1998CrossRefGoogle Scholar
18De La Torre, A.G., Bruque, S.Aranda, M.A.G.: Rietveld quantitative amorphous content analysis. J. Appl. Crystallogr. 34, 196 2001CrossRefGoogle Scholar
19Cannas, C., Musinu, A., Piccaluga, G., Deidda, C., Serra, F., Bazzoni, M.Enzo, S.: Advances in the structure and microstructure determination of yttrium silicates using the Rietveld method. J. Solid State Chem. 178, 1526 2005CrossRefGoogle Scholar
20European Synchrotron Radiation Facility (ESRF), Grenoble, France., http://www.esrf.fr (accessed April 2008).Google Scholar
21Materials Analysis Using Diffraction (MAUD)., http://www.ing .unitn.it/∼maud/ (accessed April 2008).Google Scholar
22Vonk, C.G.Fagherazzi, G.: The determination of the crystallinity in glass-ceramic materials by the method of Ruland. J. Appl. Crystallogr. 16, 274 1983CrossRefGoogle Scholar