Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T23:56:13.919Z Has data issue: false hasContentIssue false

Lefschetz Decompositions for Quotient Varieties

Published online by Cambridge University Press:  28 May 2008

Reza Akhtar
Affiliation:
Department of Mathematics, Miami University, Oxford, Ohio, 45056, USA, reza@calico.mth.muohio.edu.
Roy Joshua
Affiliation:
Department of Mathematics, Ohio State University, Columbus, Ohio, 43210, USA, joshua@math.ohio-state.edu.
Get access

Abstract

In an earlier paper, the authors constructed an explicit Chow-Künneth decomposition for the quotient of an abelian variety by the action of a finite group. In the present paper, the authors extend the techniques used there to obtain an explicit Lefschetz decomposition for such quotient varieties.

Type
Research Article
Copyright
Copyright © ISOPP 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Akhtar, R. and Joshua, R., Kunneth decomposition for quotient varieties, Indag. Math. 17, no. 3 (2006), 319344CrossRefGoogle Scholar
2.André, Y., Kahn, B. and O'Sullivan, P., Nilpotence, radicaux et structures monoïdales, Rend. Sem. Mat. Univ. Padova 108 (2002), 107291Google Scholar
3.Arapura, D., Motivation for Hodge cycles, Preprint (to appear in Advances in Math), (2006)CrossRefGoogle Scholar
4.Beauville, A., Quelques remarques sur la transformation de Fourier dans l'anneau de Chow d'une variété abélienne. Lect. Notes. in Math. 1016 (1983), 238260CrossRefGoogle Scholar
5.Deligne, P., La conjecture de Weil. II, Inst. Hautes Études Sci. Publ. Math. 52 (1980), 137252CrossRefGoogle Scholar
6.Deninger, C. and Murre, J., Motivic decomposition of Abelian schemes and the Fourier transform. J. reine und angew. Math. 422 (1991), 201219Google Scholar
7.Guletskii, V. and Pedrini, C., Finite dimensional motives and the conjectures of Beilinson and Murre, K-Theory 30, no. 3 (2003), 243263CrossRefGoogle Scholar
8.Hartshorne, R., Algebraic Geometry, Springer-Verlag, 1977CrossRefGoogle Scholar
9.Hilton, P. J. and Stammbach, U., Homological Algebra, GTM, Springer, 1972Google Scholar
10.Igusa, J-I., On some problems in abstract algebraic geometry. Proc. Acad. Nat. Sci. USA 41 (1955), 964967CrossRefGoogle ScholarPubMed
11.Kahn, B., Murre, J. and Pedrini, C., On the transcendental part of the motive of a surface, preprint, (2005)Google Scholar
12.Kleiman, S., “The Standard Conjectures”, in Motives, Proc. Symp. Pure Math. 55 part 1, AMS (1994), 320Google Scholar
13.Kimura, S-I., Chow groups can be finite dimensional, in some sense, Math. Annalen 331 (2005), 173201CrossRefGoogle Scholar
14.Künnemann, K., A Lefschetz decomposition for Chow motives of Abelian schemes, Invent. Math. 113 (1993), 85102CrossRefGoogle Scholar
15.Manin, Y., Correspondences, motives, and monoidal transformations, Math. USSRSb. 6 (1968), 439470Google Scholar
16.Mumford, D., Abelian varieties. Tata Institute of Fundamental Research Studies in Mathematics 5, Oxford University Press, 1970Google Scholar
17.Murre, J., On the motive of an algebraic surface, J. Reine Angew. Math. 409 (1990), 190204Google Scholar
18.Murre, J., On a conjectural filtration on the Chow groups of an algebraic variety: I and II. Indag. Math. (N.S.) 4, no. 2 (1993), 177201CrossRefGoogle Scholar
19.Scholl, A. J., “Classical motives” in Motives, Proc. Symp. Pure Math. 55 part 1, AMS (1994), 189205Google Scholar
20.Shermenev, A. M., The motive of an abelian variety. Funct. Anal. 8 (1974), 5561Google Scholar